【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點(diǎn).
求證:(1)E、C、D1、F四點(diǎn)共面;
(2)CE、D1F、DA三線(xiàn)共點(diǎn).
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】試題分析:(1)要證四點(diǎn)共線(xiàn),可證明EF//CD1,根據(jù)推論三可得四點(diǎn)共面;(2)從圖中可以看出AD是平面ABCD與平面ADD1A1的交線(xiàn),說(shuō)明D1F與CE相交,則交點(diǎn)在兩平面的交線(xiàn)上,從而得三線(xiàn)共點(diǎn)
試題解析:
證明:(1)如圖所示,連接CD1、EF、A1B,
∵E、F分別是AB和AA1的中點(diǎn),
∴FE∥A1B且EF=A1B.
∵A1D1∥BC,A1D1=BC
∴四邊形A1BCD1是平行四邊形,
∴A1B∥D1C,∴FE∥D1C,
∴EF與CD1可確定一個(gè)平面,即E、C、D1、F四點(diǎn)共面.
(2)由(1)知EF∥CD1,且EF=CD1,
∴四邊形CD1FE是梯形,
∴直線(xiàn)CE與D1F必相交,設(shè)交點(diǎn)為P,
則P∈CE平面ABCD,
且P∈D1F平面A1ADD1,
∴P∈平面ABCD且P∈平面A1ADD1.
又平面ABCD∩平面A1ADD1=AD,
∴P∈AD,∴CE、D1F、DA三線(xiàn)共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是圓
內(nèi)的一個(gè)定點(diǎn),點(diǎn)
是圓
上的任意一點(diǎn),線(xiàn)段
的垂直平分線(xiàn)
和半徑
相交于點(diǎn)
,當(dāng)點(diǎn)
在圓
上運(yùn)動(dòng)時(shí),點(diǎn)
的軌跡為曲線(xiàn)
.
(1)求曲線(xiàn)的方程;
(2)點(diǎn),
,直線(xiàn)
與
軸交于點(diǎn)
,直線(xiàn)
與
軸交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)輸公司接受了向一地區(qū)每天至少運(yùn)送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車(chē)和4輛載重為10 t的B型卡車(chē),有10名駕駛員,每輛卡車(chē)每天往返的次數(shù)為A型卡車(chē)4次,B型卡車(chē)3次,每輛卡車(chē)每天往返的費(fèi)用為A型卡車(chē)320元,B型卡車(chē)504元,則公司如何調(diào)配車(chē)輛,才能使公司所花的費(fèi)用最低,最低費(fèi)用為________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·山東)設(shè)f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一張紙的長(zhǎng)、寬分別為2a,2a,A,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線(xiàn)折起,使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,關(guān)于該多面體的下列命題,正確的是________(寫(xiě)出所有正確命題的序號(hào)).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·洛陽(yáng)市統(tǒng)考)已知數(shù)列{an}的前n項(xiàng)和為Sn,an≠0,a1=1,且2anan+1=4Sn-3(n∈N*).
(1)求a2的值并證明:an+2-an=2;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=ex(ln x-a)(e是自然對(duì)數(shù)的底數(shù),
e=2.71 828…).
(1)若y=f(x)在x=1處的切線(xiàn)方程為y=2ex+b,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為
,焦距為2c,且c,
,2成等比數(shù)列.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)B坐標(biāo)為(0, ),問(wèn)是否存在過(guò)點(diǎn)B的直線(xiàn)l交橢圓C于M,N兩點(diǎn),且滿(mǎn)足
(O為坐標(biāo)原點(diǎn))?若存在,求出此時(shí)直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間
上是單調(diào)增函數(shù),則實(shí)數(shù)
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com