【題目】【2018山西太原市高三3月模擬】已知橢圓的左、右頂點分別為
,右焦點為
,點
在橢圓
上.
(I)求橢圓方程;
(II)若直線與橢圓
交于
兩點,已知直線
與
相交于點
,證明:點
在定直線上,并求出定直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中
).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,討論函數(shù)
的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
,(t為參數(shù)),在以原點O為極點,
軸的非負半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,
兩點的極坐標(biāo)分別為.
(1)求圓的普通方程和直線
的直角坐標(biāo)方程;
(2)點是圓
上任一點,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)的圖象在點
處的切線平行于直線
,求
的值;
(2)討論函數(shù)在定義域上的單調(diào)性;
(3)若函數(shù)在
上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點為極點,
軸的非負半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為:
,在平面直角坐標(biāo)系
中,直線
的方程為
(
為參數(shù)).
(1)求曲線和直線
的直角坐標(biāo)方程;
(2)已知直線交曲線
于
,
兩點,求
,
兩點的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是橢圓
的左右頂點,點
是橢圓的上頂點,若該橢圓的焦距為
,直線
,
的斜率之積為
.
(1)求橢圓的方程;
(2)是否存在過點的直線
與橢圓
交于兩點
,使得以
為直徑的圓經(jīng)過點
?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
,
.
()求函數(shù)
的單增區(qū)間.
()若
,求
值.
()在
中,角
,
,
的對邊分別是
,
,
.且滿足
,求函數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點,過點F且方向向量為
的光線,經(jīng)直線
反射后通過左頂點D
.
(I)求橢圓的方程;
(II)過點F作斜率為的直線
交橢圓
于A, B兩點,M為AB的中點,直線OM (0為原點)與直線
交于點P,若滿足
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點,過點F且方向向量為
的光線,經(jīng)直線
反射后通過左頂點D
.
(I)求橢圓的方程;
(II)過點F作斜率為的直線
交橢圓
于A, B兩點,M為AB的中點,直線OM (0為原點)與直線
交于點P,若滿足
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com