日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的左右焦點(diǎn)分別為,,以,為頂點(diǎn)的梯形的高為,面積為

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè),為橢圓上的任意兩點(diǎn),若直線與圓相切,求面積的取值范圍.

          【答案】1;(2

          【解析】

          1)由梯形的高求出,由梯形的面積,建立關(guān)于方程,結(jié)合關(guān)系,即可求出橢圓標(biāo)準(zhǔn)方程;

          2)設(shè)直線的方程為:,利用直線與圓相切,得到關(guān)系,直線方程與橢圓方程聯(lián)立,設(shè),,得出關(guān)系,由相交弦長(zhǎng)公式,求出關(guān)于的函數(shù),根據(jù)函數(shù)特征,求出其范圍,再由,即可求出結(jié)論.

          1)由題意,得,且

          ,又,解得,

          ∴橢圓的方程為

          2)如圖,設(shè),

          當(dāng)圓的切線的斜率存在時(shí),設(shè)的方程為:,

          切點(diǎn)為,連結(jié),則

          因?yàn)?/span>與圓相切,

          所以,所以

          聯(lián)立,整理得

          所以,

          ①若時(shí),

          因?yàn)?/span>,

          當(dāng)且僅當(dāng)時(shí),成立.

          所以

          ②當(dāng)時(shí),,所以

          所以

          當(dāng)圓的切線斜率不存在時(shí),則的方程為

          此時(shí)的坐標(biāo)分別為,,.此時(shí)

          綜上,面積的取值范圍為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知實(shí)數(shù),設(shè)函數(shù)

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (2)對(duì)任意均有的取值范圍.

          注:為自然對(duì)數(shù)的底數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了貫徹落實(shí)黨中央對(duì)新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對(duì)其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如下:

          若評(píng)分不低于80分,則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“不認(rèn)可”.

          (Ⅰ)請(qǐng)根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?

          認(rèn)可

          不認(rèn)可

          合計(jì)

          A城市

          B城市

          合計(jì)

          (Ⅱ)在樣本A,B兩個(gè)城市對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學(xué)競(jìng)賽,求A城市中至少有1人參加的概率.

          參考公式:,其中

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          2.706

          3.841

          5.024

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.

          1)已知,證明:平面平面

          2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線過拋物線的焦點(diǎn),且與該拋物線交于兩點(diǎn),若線段的長(zhǎng)是16的中點(diǎn)到軸的距離是6,是坐標(biāo)原點(diǎn),則( ).

          A.拋物線的方程是B.拋物線的準(zhǔn)線方程是

          C.直線的方程是D.的面積是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          ⑴當(dāng)時(shí),求函數(shù)的極值;

          ⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定圓,動(dòng)圓過點(diǎn),且和圓相切.

          (Ⅰ)求動(dòng)圓圓心的軌跡的方程;

          (Ⅱ)若直線與軌跡交于兩點(diǎn),線段的垂直平分線經(jīng)過點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知過橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點(diǎn))的面積為,且過橢圓的右焦點(diǎn)的傾斜角為的直線過點(diǎn)

          1)求橢圓的標(biāo)準(zhǔn)方程

          2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,測(cè)量了他們的體重(單位:千克).健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過半年的健身后,他們的體重情況如三維餅圖(2)所示,對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論正確的是(

          A.他們健身后,體重在區(qū)間內(nèi)的人數(shù)不變

          B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)減少了2個(gè)

          C.他們健身后,體重在區(qū)間內(nèi)的肥胖者體重都有減輕

          D.他們健身后,這20位肥胖著的體重的中位數(shù)位于區(qū)間

          查看答案和解析>>

          同步練習(xí)冊(cè)答案