【題目】已知函數(shù)在
上不具有單調(diào)性.
(1)求實(shí)數(shù)的取值范圍;
(2)若是
的導(dǎo)函數(shù),設(shè)
,試證明:對(duì)任意兩個(gè)不相等正數(shù)
,不等式
恒成立.
【答案】(1)實(shí)數(shù)的取值范圍
;(2)見解析.
【解析】試題分析:(1)求函數(shù)在x∈(2,+∞)上不具有單調(diào)性時(shí)實(shí)數(shù)a的取值范圍,可以考慮求導(dǎo)函數(shù)的方法,則導(dǎo)函數(shù)在(2,+∞)上即有正也有負(fù),即有零點(diǎn),求出范圍即可.
(2)由(1)求出g(x)的函數(shù)表達(dá)式,然后求導(dǎo)函數(shù)h(x),通過判斷h(x)的單調(diào)性求出然后可以得到函數(shù)
是增函數(shù),對(duì)任意兩個(gè)不相等正數(shù)x1、x2,即可得到不等式成立.
試題解析:
(1)
在
上不具有單調(diào)性,
在
上
有正也有負(fù)也有
,即二次函數(shù)
在
上有零點(diǎn)
是對(duì)稱軸是
,開口向上的拋物線,
的實(shí)數(shù)
的取值范圍
(2)由(1),
,
,
設(shè)
在
是減函數(shù),在
增函數(shù),當(dāng)
時(shí),
取最小值
從而
,函數(shù)
是增函數(shù),
是兩個(gè)不相等正數(shù),不妨設(shè)
,則
,即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù),
為直線的傾斜角).
(1)寫出直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若直線與曲線
有唯一的公共點(diǎn),求角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中山某學(xué)校的場(chǎng)室統(tǒng)一使用“歐普照明”的一種燈管,已知這種燈管使用壽命(單位:月)服從正態(tài)分布
,且使用壽命不少于
個(gè)月的概率為
,使用壽命不少于
個(gè)月的概率為
.
(1)求這種燈管的平均使用壽命;
(2)假設(shè)一間課室一次性換上支這種新燈管,使用
個(gè)月時(shí)進(jìn)行一次檢查,將已經(jīng)損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(1)討論在其定義域上的單調(diào)性;
(2)若時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,通項(xiàng)
滿足
(
是常數(shù),
且
).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)當(dāng)時(shí),證明
;
(Ⅲ)設(shè)函數(shù),
,是否存在正整數(shù)
,使
對(duì)
都成立?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是周期為4的偶函數(shù),當(dāng)
時(shí),
,則不等式
在區(qū)間
上的解集為( )
A. (1,3) B. (-1,1) C. (-1,0)∪(1,3) D. (-1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為
軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線
的極坐標(biāo)方程為
,
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線
:
(
為參數(shù))的距離最短,寫出
點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與
軸負(fù)半軸相交于點(diǎn)
,與
軸正半軸相交于點(diǎn)
.
(1)若過點(diǎn)的直線
被圓
截得的弦長為
,求直線
的方程;
(2)若在以為圓心半徑為
的圓上存在點(diǎn)
,使得
(
為坐標(biāo)原點(diǎn)),求
的取值范圍;
(3)設(shè)是圓
上的兩個(gè)動(dòng)點(diǎn),點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
,點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,如果直線
與
軸分別交于
和
,問
是否為定值?若是求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù),且當(dāng)
時(shí),
,求
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com