【題目】如圖,在四棱錐中,側(cè)面
底面
,
為正三角形,
,
,點(diǎn)
,
分別為線段
、
的中點(diǎn),
、
分別為線段
、
上一點(diǎn),且
,
.
(1)確定點(diǎn)的位置,使得
平面
;
(2)試問:直線上是否存在一點(diǎn)
,使得平面
與平面
所成銳二面角的大小為
,若存在,求
的長;若不存在,請(qǐng)說明理由.
【答案】(1)詳見解析 (2)存在點(diǎn),且
【解析】(1)為線段
的靠近
的三等分點(diǎn).
在線段上取一點(diǎn)
,使得
,因?yàn)?/span>
,∴
,因?yàn)?/span>
為
中點(diǎn),∴
,當(dāng)
為線段
靠近
的三等分點(diǎn)時(shí),即
,
,又易知
,∴
.又
,所以平面
平面
,因?yàn)?/span>
平面
,所以
平面
.
(2)取中點(diǎn)
,連接
,因?yàn)?/span>
為正三角形,所以
,又側(cè)面
底面
,所以
底面
,以
所在直線為
軸,
的中垂線為
軸,
所在直線為
軸,建立空間直角坐標(biāo)系
,如圖所示,則
,
,設(shè)
,則
,
,設(shè)平面
的法向量為
,則
,即
,令
,得平面
的一個(gè)法向量為
,易得平面
的一個(gè)法向量為
,所以
,解得
,故存在點(diǎn)
,且
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知橢圓的上頂點(diǎn)為
,左、右頂點(diǎn)為
,右焦點(diǎn)為
,
,且
的周長為14.
(I)求橢圓的離心率;
(II)過點(diǎn)的直線
與橢圓相交于不同兩點(diǎn)
,點(diǎn)N在線段
上.設(shè)
,試判斷點(diǎn)
是否在一條定直線上,并求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】編號(hào)為A,B,C,D,E的5個(gè)小球放在如圖所示的5個(gè)盒子里,要求每個(gè)盒子只能放1個(gè)小球,且A球不能放在1,2號(hào)盒子里,B球必須放在與A球相鄰的盒子中,求不同的放法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)若,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)時(shí),函數(shù)
的兩個(gè)極值點(diǎn)為
,
,且
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某校新、老校區(qū)之間開車單程所需時(shí)間為,
只與道路暢通狀況有關(guān),對(duì)其容量為
的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:
| 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求的分布列與數(shù)學(xué)期望
;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時(shí)間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至
處,此時(shí)測(cè)得其東北方向與它相距
海里的
處有一外國船只,且
島位于海監(jiān)船正東
海里處.
(1)求此時(shí)該外國船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國船只正以每小時(shí)海里的速度沿正南方向航行,為了將該船攔截在離
島
海里處,不讓其進(jìn)入
島
海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
相交于
兩點(diǎn),與
軸,
軸分別相交于點(diǎn)
和點(diǎn)
,且
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),
的延長線交橢圓于點(diǎn)
,過點(diǎn)
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)
在橢圓
上,求橢圓
的方程;
(2)當(dāng)時(shí),若點(diǎn)
平分線段
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:
分公司名稱 | 雅雨 | 雅魚 | 雅女 | 雅竹 | 雅茶 |
月銷售額 | 3 | 5 | 6 | 7 | 9 |
月利潤額 | 2 | 3 | 3 | 4 | 5 |
在統(tǒng)計(jì)中發(fā)現(xiàn)月銷售額和月利潤額
具有線性相關(guān)關(guān)系.
(1)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤額與月銷售額
之間的線性回歸方程;
(2)若該總公司還有一個(gè)分公司“雅果”月銷售額為10萬元,試估計(jì)它的月利潤額是多少?
(參考公式: ,
,其中:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程=
x+
;
(2)利用(1)中所求出的直線方程預(yù)測(cè)該地2018年的糧食需求量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com