已知函數(shù)

的導函數(shù)

滿足

常數(shù)

為方程

的實數(shù)根
(1)若函數(shù)

的定義域為I,對任意

存在

使等式

成立。 求證:方程

不存在異于

的實數(shù)根。
(2)求證:當

時,總有

成立。
(1)假設存在

不妨令

則

由已知,存在

使


與

矛盾。
(2)令



在其定義域內(nèi)是減函數(shù)。

時,

練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)

(1)求函數(shù)

的極值點
(2)當

時,若對任意的

,恒有

,求

的取值范圍
(3)證明:

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)設函數(shù)

(1)求函數(shù)

的單調(diào)區(qū)間;(2)求

在[—1,2]上的最小值;(3)當

時,用數(shù)學歸納法證明:

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)已知函數(shù)

的圖象過原點,且

在

、

處取得極值.
(Ⅰ)求函數(shù)

的單調(diào)區(qū)間及極值;
(Ⅱ)若函數(shù)

與

的圖象有且僅有一個公共點,求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知

在

與

時都取得極值.
(1)求

的值;(2)若

,求

的單調(diào)區(qū)間和極值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)

(Ⅰ)求函數(shù)
f (
x)的定義域
(Ⅱ)確定函數(shù)
f (
x)在定義域上的單調(diào)性,并證明你的結(jié)論.
(Ⅲ)若
x>0時

恒成立,求正整數(shù)
k的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.已知函數(shù)

(1)判定

的單調(diào)性,并證明。
(2)設

,若方程

有實根,求

的取值范圍。
(3)求函數(shù)

在

上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
對于函數(shù)

。
(1)若

在

處取得極值,且

的圖像上每一點的切線的斜率均不超過

試求實數(shù)

的取值范圍;
(2)若

為實數(shù)集R上的單調(diào)函數(shù),設點P的坐標為

,試求出點P的軌跡所形成的圖形的面積S。
查看答案和解析>>