日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DCEPC的中點.

          )證明PA//平面BDE;

          )求二面角B—DE—C的平面角的余弦值;

          )在棱PB上是否存在點F,使PB⊥平面DEF?證明你的結(jié)論.

          【答案】)證明見解析;( ;()證明見解析.

          【解析】

          (Ⅰ)以D為坐標(biāo)原點,分別以DA、DCDP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,利用向量法能證明PA∥平面BDE;(Ⅱ)由已知求出平面BDE的一個法向量和平面DEC的一個法向量,利用向量法能求出二面角BDEC的余弦值;(Ⅲ)由已知得PBDE,假設(shè)棱PB上存在點F,使PB⊥平面DEF,設(shè),(0λ1),由此利用向量法能求出在棱PB上存在點FPF=,使得PB⊥平面DEF

          )證明:以D為坐標(biāo)原點,

          分別以DA、DCDP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,

          設(shè)PD=DC=2,則A2,0,0),P00,2),E0,11),B22,0),

          =2,0,﹣2),=0,1,1),,

          設(shè)是平面BDE的一個法向量,

          則由,得,

          y=1,得

          =22=0,,

          PA不包含于平面BDE,PA∥平面BDE;

          )由()知=1,﹣1,1)是平面BDE的一個法向量,

          ==2,0,0)是平面DEC的一個法向量.

          設(shè)二面角BDEC的平面角為θ

          ∴cosθ=cos,=

          故二面角BDEC的余弦值為

          =2,2,﹣2),=0,11),

          =0,∴PB⊥DE,

          假設(shè)棱PB上存在點F,使PB⊥平面DEF,設(shè),(0λ∠1),

          =,﹣),==,2),

          =0,得2+4λ22=0,

          0,1),此時PF=,

          即在棱PB上存在點FPF=,使得PB⊥平面DEF

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。

          (1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

          (2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時,,

          (Ⅰ)證明是奇函數(shù);

          (Ⅱ)證明上是減函數(shù);

          (III)若,,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在直三棱柱ABCA1B1C1中,CA4,CB4,CC12,∠ACB90°,點M在線段A1B1.

          1A1M3MB1,求異面直線AMA1C所成角的余弦值;

          2若直線AM與平面ABC1所成角為30°,試確定點M的位置.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校為了調(diào)查高一年級學(xué)生的體育鍛煉情況,從甲、乙、丙3個班中,按分層抽樣的方法獲得了部分學(xué)生一周的鍛煉時間(單位:h),數(shù)據(jù)如下,

          6

          6.5

          7

          7.5

          8

          6

          7

          8

          9

          10

          11

          12

          3

          4.5

          6

          7.5

          9

          10.5

          12

          13.5

          1)求三個班中學(xué)生人數(shù)之比;

          2)估計這個學(xué)校高一年級學(xué)生中,一周的鍛煉時間超過10h的百分比;

          3)估計這個學(xué)校高一年級學(xué)生一周的平均鍛煉時間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為兩個隨機事件,給出以下命題:(1)若為互斥事件,且,,則;(2)若,,則為相互獨立事件;(3)若,,,則為相互獨立事件;(4)若,,,則為相互獨立事件;(5)若,,則為相互獨立事件;其中正確命題的個數(shù)為( )

          A. 1B. 2C. 3D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

          (1)當(dāng)甲城市投資50萬元時,求此時公司總收益;

          (2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】閱讀:

          已知、,,求的最小值.

          解法如下:

          當(dāng)且僅當(dāng),即時取到等號,

          的最小值為.

          應(yīng)用上述解法,求解下列問題:

          (1)已知,,求的最小值;

          (2)已知,求函數(shù)的最小值;

          (3)已知正數(shù)、,,

          求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某次人才招聘會上,假定某畢業(yè)生贏得甲公司面試機會的概率為,贏得乙、丙兩公司面試機會的概率均為,且三家公司是否讓其面試是相互獨立的,則該畢業(yè)生只贏得甲、乙兩家公司面試機會的概率為(

          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案