【題目】在某次人才招聘會上,假定某畢業(yè)生贏得甲公司面試機(jī)會的概率為,贏得乙、丙兩公司面試機(jī)會的概率均為
,且三家公司是否讓其面試是相互獨(dú)立的,則該畢業(yè)生只贏得甲、乙兩家公司面試機(jī)會的概率為( )
A.B.
C.
D.
【答案】B
【解析】
記事件A為“該畢業(yè)生贏得甲公司的面試機(jī)會”,事件B為“該畢業(yè)生贏得乙公司的面試機(jī)會”,事件C為“該畢業(yè)生贏得丙公司的面試機(jī)會”.則即求事件的概率,利用對立事件的概率公式和相互獨(dú)立事件的概率公式計(jì)算可得.
解析:記事件A為“該畢業(yè)生贏得甲公司的面試機(jī)會”,事件B為“該畢業(yè)生贏得乙公司的面試機(jī)會”,事件C為“該畢業(yè)生贏得丙公司的面試機(jī)會”.
由題意可得,
,
則“該畢業(yè)生只贏得甲、乙兩家公司面試機(jī)會”為事件,
由相互獨(dú)立事件同時發(fā)生的概率公式,
可得.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(Ⅰ)證明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,其離心率
,且短軸的個端點(diǎn)與兩焦點(diǎn)組成的三角形面積為
,過橢圓上的點(diǎn)
作
軸的垂線,垂足為
,點(diǎn)
滿足
,設(shè)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)若直線與曲線
相切,且交橢圓于
兩點(diǎn),
,記
的面積為
,
的面積為
,求
的最大值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若存在,使得函數(shù)
在區(qū)間
上的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮 讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份
之間的回歸直線方程
;
(2)預(yù)測該路口 9月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)若從表中3、4月份分別抽取4人和2人,然后再從中任選2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若,函數(shù)
在區(qū)間
上的最大值是
,最小值是
,求
的值;
(2)用定義法證明在其定義域上是減函數(shù);
(3)設(shè), 若對任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,三個內(nèi)角
的對邊分別為
.
(1)若是
的等差中項(xiàng),
是
的等比中項(xiàng),求證:
為等邊三角形;
(2)若為銳角三角形,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、
分別是橢圓
的左、右焦點(diǎn).若
是該橢圓上的一個動點(diǎn),
的最大值為1.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
(
與
不重合),則直線
與
軸是否交于一個定點(diǎn)?若是,請寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com