日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在直三棱柱ABCA1B1C1中,CA4,CB4CC12,∠ACB90°,點(diǎn)M在線段A1B1.

          1A1M3MB1,求異面直線AMA1C所成角的余弦值;

          2若直線AM與平面ABC1所成角為30°,試確定點(diǎn)M的位置.

          【答案】(1);(2)線段A1B1的中點(diǎn)

          【解析】

          試題分析:本題考查用空間向量法解決立體幾何問(wèn)題,最簡(jiǎn)單的方法是建立空間直角坐標(biāo)系,如C為坐標(biāo)原點(diǎn),分別以CA,CBCC1所在直線為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)坐標(biāo),(1)求得相應(yīng)向量,異面直線AMA1C所成角的余弦值就是cos的絕對(duì)值;(2先求得平面ABC1的法向量為n因?yàn)辄c(diǎn)M在線段A1B1上,可設(shè)M(x,4x,2),利用法向量n與向量的夾角(銳角)與直線和平面所成的角互余可得,即由|cosn|可求得,從而確定的位置.

          試題:方法一 (坐標(biāo)法)

          C為坐標(biāo)原點(diǎn),分別以CA,CB,CC1所在直線為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則C(0,0,0),A(4,0,0),A1(4,0,2),B1(0,4,2).

          (1)因?yàn)?/span>A1M3MB1,所以M(1,3,2).

          所以(4,0,2),(3,3,2).

          所以cos,〉==-.

          所以異面直線AM和A1C所成角的余弦值為.

          (2)A(4,0,0),B(0,4,0)C1(0,0,2),

          (4,4,0)(4,0,2).

          設(shè)平面ABC1的法向量為n(a,bc),

          a1,則b1,c,

          所以平面ABC1的一個(gè)法向量為n(1,1).

          因?yàn)辄c(diǎn)M在線段A1B1上,所以可設(shè)M(x,4x,2),

          所以(x4,4x,2).

          因?yàn)橹本AM與平面ABC1所成角為30°,

          所以|cosn,|sin 30°=.

          |n||n||||cosn,|,得

          |1 (x4)1 (4x)2|

          2,

          解得x2x6.

          因?yàn)辄c(diǎn)M在線段A1B1上,所以x2,

          即點(diǎn)M(2,2,2)是線段A1B1的中點(diǎn).

          方法二 (選基底法)

          由題意得CC1CACACB,CC1CB,取,,作為一組基底,

          則有||||4,||2,

          0.

          (1)3,則,

          ,

          ||

          =-,且||2,

          4

          cos〉=.

          即異面直線AMA1C所成角的余弦值為.

          (2)設(shè)A1M=λA1B1,則+λ-λ.

          ,

          設(shè)面ABC1的法向量為nxyz,

          8z16x016y16x0,

          不妨取xy1,z2,

          n2|n|8,

          ||16,

          AM與面ABC1所成的角為30°,則應(yīng)有

          ,

          得λ=,即MA1B1的中點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】經(jīng)市場(chǎng)調(diào)查,某門(mén)市部的一種小商品在過(guò)去的20天內(nèi)的日銷(xiāo)售量與價(jià)格均為時(shí)間的函數(shù),且日銷(xiāo)售量近似滿足函數(shù),而且銷(xiāo)售價(jià)格近似滿足于

          1試寫(xiě)出該種商品的日銷(xiāo)售額與時(shí)間的函數(shù)表達(dá)式;

          2求該種商品的日銷(xiāo)售額的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直三棱柱中,,分別為、的中點(diǎn).

          (1)證明:平面

          (2)已知與平面所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).

          (Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;

          (Ⅱ)過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,求的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在斜三棱柱中,,平面底面,點(diǎn)、D分別是線段、BC的中點(diǎn).

          (1)求證:;

          (2)求證:AD//平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,,,

          (1)證明:點(diǎn)在底面上的射影必在直線上;

          (2)若二面角的大小為,,求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,EPC的中點(diǎn).

          )證明PA//平面BDE;

          )求二面角B—DE—C的平面角的余弦值;

          )在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)是偶函數(shù).

          1)求實(shí)數(shù)k的值;

          2)設(shè)函數(shù),若方程只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)為奇函數(shù).

          1)求實(shí)數(shù)的值;

          2)判斷并證明函數(shù)的單調(diào)性;

          3)若存在,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案