【題目】如圖:已知正方形的邊長為
,沿著對角線
將
折起,使
到達(dá)
的位置,且
.
(1)證明:平面平面
;
(2)若是
的中點,點
在線段
上,且滿足直線
與平面
所成角的正弦值為
,求
的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓
:
,點
在橢圓
上,過點
作圓
的切線,其切線長為橢圓
的短軸長.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線與橢圓
的另一個交點為
,點
在橢圓
上,且
,直線
與
軸交于
點.設(shè)直線
,
的斜率分別為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進(jìn)行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月18日國際射聯(lián)步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯(lián)步手槍世界杯總決賽時隔10年再度走進(jìn)中國.為了增強(qiáng)趣味性,并實時播報現(xiàn)場賽況,我,F(xiàn)場小記者李明和播報小記者王華設(shè)計了一套播報轉(zhuǎn)碼法,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的的26個字母(不論大小寫)依次對應(yīng)1,2,3,…,26這26個自然數(shù)通過變換公式:
,將明文轉(zhuǎn)換成密文,如
,即
變換成
,即
變換成
.若按上述規(guī)定,若王華收到的密文是
,那么原來的明文是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,點A為該橢圓的左頂點,過右焦點
的直線l與橢圓交于B,C兩點,當(dāng)
軸時,三角形ABC的面積為18.
求橢圓
的方程;
如圖,當(dāng)動直線BC斜率存在且不為0時,直線
分別交直線AB,AC于點M、N,問x軸上是否存在點P,使得
,若存在求出點P的坐標(biāo);若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月26日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實施意見》,衛(wèi)生部對16所大學(xué)食堂的“進(jìn)貨渠道合格性”和“食品安全”進(jìn)行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學(xué)食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:
(1)現(xiàn)從16所大學(xué)食堂中隨機(jī)抽取3個,求至多有1個評分不低于9分的概率;
(2)以這16所大學(xué)食堂評分?jǐn)?shù)據(jù)估計大學(xué)食堂的經(jīng)營性質(zhì),若從全國的大學(xué)食堂任選3個,記表示抽到評分不低于9分的食堂個數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(
為參數(shù)),以平面直角坐標(biāo)系的原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)過點,傾斜角為
的直線l與曲線C相交于M,N兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若動點到定點
與定直線
的距離之和為
.
(1)求點的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;
(2)(理)記(1)得到的軌跡為曲線,問曲線
上關(guān)于點
對稱的不同點有幾對?請說明理由.
(3)(文)記(1)得到的軌跡為曲線,若曲線
上恰有三對不同的點關(guān)于點
對稱,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com