【題目】已知橢圓:
的離心率為
,點(diǎn)A為該橢圓的左頂點(diǎn),過(guò)右焦點(diǎn)
的直線l與橢圓交于B,C兩點(diǎn),當(dāng)
軸時(shí),三角形ABC的面積為18.
求橢圓
的方程;
如圖,當(dāng)動(dòng)直線BC斜率存在且不為0時(shí),直線
分別交直線AB,AC于點(diǎn)M、N,問(wèn)x軸上是否存在點(diǎn)P,使得
,若存在求出點(diǎn)P的坐標(biāo);若不存在說(shuō)明理由.
【答案】
;
存在,P
或
.
【解析】
由離心率及三角形ABC的面積和a,b,c之間的關(guān)系求出橢圓方程;
由
知A的坐標(biāo),設(shè)直線BC的方程,及B,C的坐標(biāo),進(jìn)而寫(xiě)直線AB,AC的方程,與直線
聯(lián)立求出M,N的坐標(biāo),假設(shè)存在P點(diǎn),是
,使
,求出P點(diǎn)坐標(biāo).
解:由已知條件得
,解得
;
所以橢圓的方程為
;
設(shè)動(dòng)直線BC的方程為
,
,
,
則直線AB、AC的方程分別為和
,
所以點(diǎn)M、N的坐標(biāo)分別為,
聯(lián)立得
,
所以;
于是,
假設(shè)存在點(diǎn)滿足
,則
,所以
或5,
所以當(dāng)點(diǎn)P為或
時(shí),有
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)
處的切線方程為
,求
的值;
(2)若的導(dǎo)函數(shù)
存在兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),是否存在整數(shù)
,使得關(guān)于
的不等式
恒成立?若存在,求出
的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖所示:曲線是以點(diǎn)
為圓心的圓的一部分,其中
,
是圓的切線,且
,曲線
是拋物線
的一部分,
,且
恰好等于圓
的半徑.
(1)若米,
米,求
與
的值;
(2)若體育館側(cè)面的最大寬度不超過(guò)75米,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,且點(diǎn)
在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓
的兩條切線,切點(diǎn)分別為
不在坐標(biāo)軸上),若直線
在x軸,y軸上的截距分別為
,證明:
為定值;
(3)若是橢圓
上不同兩點(diǎn),
軸,圓E過(guò)
,且橢圓
上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問(wèn):橢圓
是否存在過(guò)焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為
,沿著對(duì)角線
將
折起,使
到達(dá)
的位置,且
.
(1)證明:平面平面
;
(2)若是
的中點(diǎn),點(diǎn)
在線段
上,且滿足直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),對(duì)于項(xiàng)數(shù)為
的有窮數(shù)列
,令
為
中最大值,稱數(shù)列
為數(shù)列
的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7. 考查正整數(shù)1,2,…,
的所有排列,將每種排列都視為一個(gè)有窮數(shù)列
.
(1)若,寫(xiě)出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列
;
(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的
的創(chuàng)新數(shù)列;若不存在,請(qǐng)說(shuō)明理由.
(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列
的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是公比大于
的等比數(shù)列,
為數(shù)列
的前
項(xiàng)和,
,且
,
,
成等差數(shù)列.數(shù)列
的前
項(xiàng)和為
,
滿足
,且
,
(1)求數(shù)列和
的通項(xiàng)公式;
(2)令,求數(shù)列
的前
項(xiàng)和為
;
(3)將數(shù)列,
的項(xiàng)按照“當(dāng)
為奇數(shù)時(shí),
放在前面;當(dāng)
為偶數(shù)時(shí),
放在前面”的要求進(jìn)行排列,得到一個(gè)新的數(shù)列:
,
,
,
,
,
,
,
,
,
,
,
,求這個(gè)新數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
為兩非零有理數(shù)列(即對(duì)任意的
,
,
均為有理數(shù)),
為一個(gè)無(wú)理數(shù)列(即對(duì)任意的
,
為無(wú)理數(shù)).
(1)已知,并且
對(duì)任意的
恒成立,試求
的通項(xiàng)公式;
(2)若為有理數(shù)列,試證明:對(duì)任意的
,
恒成立的充要條件為
;
(3)已知,
,試計(jì)算
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐的底面ABCD為直角梯形,
,
,
,
為正三角形.
Ⅰ
點(diǎn)M為棱AB上一點(diǎn),若
平面SDM,
,求實(shí)數(shù)
的值;
Ⅱ
若
,求二面角
的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com