日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)函數(shù)f(x)=1-2a-2acosx-2sin2x的最小值為g(a)(a∈R).
          (1)求g(a);
          (2)若g(a)=,求a及此時f(x)的最大值.
          (1)見解析;(2)a=-1. 此時f(x)取得最大值為5.       
          (1)f(x)=1-2a-2acosx-2sin2x=22-2a-1.-1≤cosx≤1.轉(zhuǎn)化為二次函數(shù)問題解決.
          (2)在第(1)問的基礎(chǔ)上,根據(jù)g(a)=,建立關(guān)于a的方程求解即可.
          解:(1)由f(x)=1-2a-2acosx-2sin2x
          =1-2a-2acosx-2(1-cos2x)
          =2cos2x-2acosx-(2a+1)
          =22-2a-1.這里-1≤cosx≤1.    …………4分     
          ①若-1≤≤1,即-2≤a≤2,則當(dāng)cosx=時,f(x)min=--2a-1;…………5分 
          ②若>1,則當(dāng)cosx=1時,f(x)min=1-4a;…………6分 
          ③若<-1,則當(dāng)cosx=-1時,f(x)min=1.          …………7分  
          因此g(a)=.…………8分  
          (2)∵g(a)=.
          ∴①若a>2,則有1-4a=,得a=,矛盾;  …………10分  
          ②若-2≤a≤2,則有--2a-1=,
          即a2+4a+3=0,∴a=-1或a=-3(舍).   …………12分  
          ∴g(a)=時,a=-1. 此時f(x)=22,
          當(dāng)cosx=1時,f(x)取得最大值為5.          …………14分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)
          已知函數(shù)
          (1)求函數(shù)的最小值;
          (2)證明:對任意恒成立;
          (3)對于函數(shù)圖象上的不同兩點,如果在函數(shù)圖象上存在點(其中)使得點處的切線,則稱直線存在“伴侶切線”.特別地,當(dāng)時,又稱直線存在 “中值伴侶切線”.試問:當(dāng)時,對于函數(shù)圖象上不同兩點、,直線是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)f(x)=ax2-(2+a)x-3在區(qū)間[,1]是單調(diào)函數(shù),則a的取值范圍是。ā 。
          A.0<a≤2B.a(chǎn)≤2
          C.a(chǎn)≥-2D.a(chǎn)≥2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          分別為三次函數(shù)的極大值點和極小值點,則以為頂點,為焦點的雙曲線的離心率 等于        

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)關(guān)于的不等式的解集為.
          (1)若,求實數(shù)的取值范圍;
          (2)求,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)
          (1)若方程有兩個相等的實數(shù)根,求的解析式;
          (2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求a的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (14分)設(shè)二次函數(shù)(a>0),方程的兩個根
          滿足. (1),求 的值。
          (2)設(shè)函數(shù)的圖象關(guān)于直線對稱,證明:
          (3)當(dāng)x∈(0,)時,證明x<

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù),若,(其中),則實數(shù)的取值范圍是                

          查看答案和解析>>

          同步練習(xí)冊答案