【題目】下列命題中正確的有( )
①命題x∈R,使sin x+cos x= 的否定是“對(duì)x∈R,恒有sin x+cos x≠
”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點(diǎn)的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進(jìn)制數(shù)66化為二進(jìn)制數(shù)是1 000 010(2) .
A.①②③④
B.①④
C.②③
D.③④
【答案】B
【解析】解:①命題x∈R,使sin x+cos x= 的否定是“對(duì)x∈R,恒有sin x+cos x≠
”;滿足命題的否定形式,所以①正確;
②“a≠1或b≠2”是“a+b≠3”的充要條件;不是充要條件,所以②不正確;
③若曲線C上的所有點(diǎn)的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程,不滿足曲線與方程的關(guān)系,所以不正確;
④1 000 010(2)=1×26+1×2=66(10) . 十進(jìn)制數(shù)66化為二進(jìn)制數(shù)是1 000 010(2) .
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,棱長(zhǎng)為1 ,點(diǎn)
為線段
上的動(dòng)點(diǎn)(包含線段端點(diǎn)),則下列結(jié)論正確的______.
①當(dāng)時(shí),
平面
;
②當(dāng)時(shí),
平面
;
③的最大值為
;
④的最小值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一學(xué)生共有500人,為了了解學(xué)生的歷史學(xué)習(xí)情況,隨機(jī)抽取了50名學(xué)生,對(duì)他們一年來(lái)4次考試的歷史平均成績(jī)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補(bǔ)全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點(diǎn)值(例如區(qū)間[70,80)的中點(diǎn)值是
75作為代表,試估計(jì)該校高一學(xué)生歷史成績(jī)的平均分;
(3)估計(jì)該校高一學(xué)生歷史成績(jī)?cè)?0~100分范圍內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)若A∩B=B,求m的取值范圍;
(2)若A∩B≠,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù):①y=3﹣x;② ;③y=x2+2x﹣10;④
,其中值域?yàn)镽的函數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:方程 =1表示雙曲線,命題q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓為參數(shù)
和直線
其中
為參數(shù),
為直線
的傾斜角
.
(1)當(dāng)時(shí),求圓上的點(diǎn)到直線
的距離的最小值;
(2)當(dāng)直線與圓
有公共點(diǎn)時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐V﹣ABCD中,底面ABCD是正方形,側(cè)棱VA⊥底面ABCD,點(diǎn)E為VA的中點(diǎn).
(Ⅰ)求證:VC∥平面BED;
(Ⅱ)求證:平面VAC⊥平面BED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓
過(guò)點(diǎn)
,離心率為
,
,
是橢圓
的長(zhǎng)軸的兩個(gè)端點(diǎn)(
位于
右側(cè)),
是橢圓在
軸正半軸上的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在經(jīng)過(guò)點(diǎn)且斜率為
的直線
與橢圓
交于不同兩點(diǎn)
和
,使得向量
與
共線?如果存在,求出直線方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com