【題目】已知函數(shù),
(1)若,求函數(shù)
的極值及單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn)
,使
成立,求實(shí)數(shù)
的取值范圍.
【答案】(1) 時,
有極小值
,無極大值,
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,(2)
【解析】試題分析:(1)當(dāng)時,求得
,根據(jù)
和
的解集,即可得到函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間上存在一點(diǎn)
,使得
成立,轉(zhuǎn)化為
在區(qū)間
上的最小值小于0,當(dāng)
時,
在區(qū)間
上的最小值為
,進(jìn)而根據(jù)
和
分類討論,即可確定實(shí)數(shù)
的取值范圍.
試題解析:
(1)當(dāng)時,
,令
,解得
,又函數(shù)
的定義域?yàn)?/span>
,由
,得
,由
,得
,所以
時,
有極小值
,無極大值,所以
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
(2)若在區(qū)間上存在一點(diǎn)
,使得
成立,即
在區(qū)間
上的最小值小于0.
,且
,令
,得到
當(dāng),即
時,
恒成立,即
在區(qū)間
上單調(diào)遞減故
在區(qū)間上的最小值為
,
由,得
,
,當(dāng)
即
時,
①若,則
對
成立,所以
在區(qū)間
上單調(diào)遞減
則在區(qū)間
上的最小值為
,
顯然, 在區(qū)間
的最小值小于0不成立.②若
,即
時,則有
- | 0 | + | |
極小值 |
所以在區(qū)間
上的最小值為
,由
,得
,解得
,即
,
綜上,由①②可知, 符題意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1上任意一點(diǎn)M到直線l:y=4的距離是它到點(diǎn)F(0,1)距離的2倍;曲線C2是以原點(diǎn)為頂點(diǎn),F為焦點(diǎn)的拋物線.
(1)求C1,C2的方程;
(2)設(shè)過點(diǎn)F的直線與曲線C2相交于A,B兩點(diǎn),分別以A,B為切點(diǎn)引曲線C2的兩條切線l1,l2,設(shè)l1,l2相交于點(diǎn)P,連接PF的直線交曲線C1于C,D兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)及函數(shù)
(1)若,求
的單調(diào)區(qū)間;
(2)設(shè)集合,使
在
上恒成立的
的取值范圍記作集合
,求證:
是
的真子集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已經(jīng)函數(shù)的定義域?yàn)?/span>
,設(shè)
(1)試確定的取值范圍,使得函數(shù)
在
上為單調(diào)函數(shù)
(2)求證
(3)若不等式(為
正整數(shù))對任意正實(shí)數(shù)
恒成立,求
的最大值.(解答過程可參考使用以下數(shù)據(jù)
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面
平面
,
,
.
(1)求直線與平面
所成角的正弦值;
(2)若動點(diǎn)在底面
邊界及內(nèi)部,二面角
的余弦值為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率
,左、右焦點(diǎn)分別為
,且
與拋物線
的焦點(diǎn)重合.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過的直線交橢圓于
兩點(diǎn),過
的直線交橢圓于
兩點(diǎn),且
,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com