【題目】如圖,在四棱錐中,棱
底面
,且
,
,
,
是
的中點(diǎn).
(1)求證: 平面
;
(2)求三棱錐的體積.
【答案】(1) 見解析(2)
【解析】試題分析:(1)取中點(diǎn)
,連接
,利用線面垂直的性質(zhì),得到
,進(jìn)而得到
平面
,又根據(jù)三角形的性質(zhì),證得
,即可證明
平面
;
(2)解:由(1)知, 是三棱錐
的高,再利用三棱錐的體積公式,即可求解幾何體的體積.
試題解析:
(1)證明:取中點(diǎn)
,連接
,∵
底面
,
底面
,
,且
平面
,又
平面
,所以
.
又∵,H為PB的中點(diǎn),
,又
,
平面
,在
中,
分別為
中點(diǎn),
,又
,
,
,
∴四邊形
是平行四邊形,∴
、
平面
.
(2)解:由(1)知, ,∴
,又
,且
,
平面
,
是三棱錐
的高,又可知四邊形
為矩形,且
,
,所以
.
另解: 是
的中點(diǎn),∴
到平面
的距離是
到平面
的距離的一半,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐
組合而成,
,
.
(Ⅰ)證明:平面平面
;
(Ⅱ)求正四棱錐的高
,使得二面角
的余弦值是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(2)若對(duì)于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校為豐富師生課余活動(dòng),計(jì)劃在一塊直角三角形的空地上修建一個(gè)占地面積為
(平方米)的
矩形健身場(chǎng)地,如圖,點(diǎn)
在
上,點(diǎn)
在
上,且
點(diǎn)在斜邊
上,已知
,
米,
米,
.設(shè)矩形
健身場(chǎng)地每平方米的造價(jià)為
元,再把矩形
以外(陰影部分)鋪上草坪,每平方米的造價(jià)為
元(
為正常數(shù))
(1)試用表示
,并求
的取值范圍;
(2)求總造價(jià)關(guān)于面積
的函數(shù)
;
(3)如何選取,使總造價(jià)
最低(不要求求出最低造價(jià))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若,求函數(shù)
的極值及單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn)
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系
有相同的長度單位,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線與直線
交于
、
兩點(diǎn),且
點(diǎn)的坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè),
(
)是
的兩個(gè)零點(diǎn),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,
為橢圓的上頂點(diǎn),
為等邊三角形,且其面積為
,
為橢圓的右頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓
相交于
兩點(diǎn)(
不是左、右頂點(diǎn)),且滿足
,試問:直線
是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo),否則說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com