如圖,在長(zhǎng)方體中,
點(diǎn)
在棱
上.
(1)求異面直線與
所成的角;
(2)若二面角的大小為
,求點(diǎn)
到平面
的距離.
(1);(2)
.
解析試題分析:根據(jù)幾何體的特征,可有兩種思路,即“幾何法”和“向量法”.
思路一:(1)連結(jié).由
是正方形知
.
根據(jù)三垂線定理得,即得異面直線
與
所成的角為
.
(2)作,垂足為
,連結(jié)
,得
.
為二面角
的平面角,
.于是
,根據(jù)
,得
,又
,得到
.
設(shè)點(diǎn)到平面
的距離為
,于求得
.
思路二:分別以為
軸,
軸,
軸,建立空間直角坐標(biāo)系.
(1)由,得
,
設(shè),又
,則
.
計(jì)算得
即得解.
(2)為面
的法向量,設(shè)
為面
的法向量,
由,
得到.①
由,得
,根據(jù)
,即
,
得到②
由①、②,可取,
點(diǎn)到平面
的距離
.
試題解析:解法一:(1)連結(jié).由
是正方形知
.
∵平面
,
∴是
在平面
內(nèi)的射影.
根據(jù)三垂線定理得,
則異面直線與
所成的角為
. 5分
(2)作,垂足為
,連結(jié)
,則
.
所以為二面角
的平面角,
.于是
,
易得,所以
,又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△ABC中,∠ABC=,∠BAC
,AD是BC上的高,沿AD把△ABD折起,使∠BDC
.
(1)證明:平面ADB⊥平面BDC;
(2)設(shè)E為BC的中點(diǎn),求與
夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,
,E是PA的中點(diǎn).
(1)求證:平面平面EBD;
(2)若PA=AB=2,直線PB與平面EBD所成角的正弦值為,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正四棱錐P-ABCD中,PA=AB=,點(diǎn)M,N分別在線段PA和BD上,BN=
BD.
(1)若PM=PA,求證:MN⊥AD;
(2)若二面角M-BD-A的大小為,求線段MN的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形為平行四邊形,
,
平面
,
,
,
,
.
(1)若是線段
的中點(diǎn),求證:
平面
;
(2)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱中,側(cè)棱
平面
,
為等腰直角三角形,
,且
分別是
的中點(diǎn).
(1)求證:平面
;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐的底面為直角梯形,
,
,
底面
,且
,
是
的中點(diǎn).
⑴求證:直線平面
;
⑵⑵若直線與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA底面ABCD,且SA=2,AD=DC=1
(1)若點(diǎn)E在SD上,且證明:
平面
;
(2)若三棱錐S-ABC的體積,求面SAD與面SBC所成二面角的正弦值的大小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com