【題目】已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設(shè)數(shù)列{an}的通項an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項和,試比較Sn與
logabn+1的大小,并證明你的結(jié)論.
【答案】(1)bn=3n-2.(2)當(dāng)a>1時,Sn>logabn+1,當(dāng)0<a<1時,Sn<
logabn+1
【解析】
(1)設(shè)數(shù)列{bn}的公差為d,
由題意得∴bn=3n-2.
(2)由bn=3n-2,知Sn=loga(1+1)+loga+…+loga
=loga
而logabn+1=loga
,于是,比較Sn與
logabn+1的大小比較
(1+1)與
的大小.
取n=1,有1+1=>
=
,
取n=2,有(1+1)>
>
=
.
推測(1+1)…
>
,(*)
①當(dāng)n=1時,已驗證(*)式成立;
②假設(shè)n=k(k≥1)時(*)式成立,即(1+1)>
,
則當(dāng)n=k+1時,
(1+1)>
.
∵-
=
>0,∴
,
從而(1+1),即當(dāng)n=k+1時,(*)式成立.由①②知(*)式對任意正整數(shù)n都成立.于是,當(dāng)a>1時,Sn>
logabn+1,當(dāng)0<a<1時,Sn<
logabn+1
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
,其中
為參數(shù),
.在以坐標原點
為極點,軸的正半軸為極軸的極坐標系中,點
的極坐標為
,直線
的極坐標方程為
.
(1)求直線的直角坐標方程與曲線
的普通方程;
(2)若是曲線
上的動點,
為線段
的中點.求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線
的方程為
.曲線
的參數(shù)方程為
(
為參數(shù)).
(1)求的直角坐標方程;
(2)若與
有三個不同的公共點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人投籃命中的概率分別為與
,各自相互獨立.現(xiàn)兩人做投籃游戲,共比賽3局,每局每人各投一球.
(1)求比賽結(jié)束后甲的進球數(shù)比乙的進球數(shù)多1的概率;
(2)設(shè)表示比賽結(jié)束后甲、乙兩人進球數(shù)的差的絕對值,求
的概率分布和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在含有個元素的集合
中,若這
個元素的一個排列(
,
,…,
)滿足
,則稱這個排列為集合
的一個錯位排列(例如:對于集合
,排列
是
的一個錯位排列;排列
不是
的一個錯位排列).記集合
的所有錯位排列的個數(shù)為
.
(1)直接寫出,
,
,
的值;
(2)當(dāng)時,試用
,
表示
,并說明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為
.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一款智能學(xué)習(xí)APP,學(xué)習(xí)內(nèi)容包含文章學(xué)習(xí)和視頻學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文章學(xué)習(xí)積分的概率分布表如表1所示,視頻學(xué)習(xí)積分的概率分布表如表2所示.
(1)現(xiàn)隨機抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求
的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com