【題目】在如圖所示的幾何體中,四邊形是等腰梯形,
,
,
平面
,
,
.
()求證:
平面
.
()求二面角
的余弦值.
()在線段
(含端點)上,是否存在一點
,使得
平面
,若存在,求出
的值;若不存在,請說明理由.
【答案】()見解析;(
)
;(
)存在,
【解析】試題分析:(1)由題意,證明,
,證明
面
;(2)建立空間直角坐標系,求平面
和平面
的法向量,解得余弦值為
;(3)得
,
,所以
,
,所以存在
為
中點.
試題解析:
()∵
,
,∴
.
∵,∴
,∴
,
.
∵,且
,
、
面
,∴
面
.
()知
,∴
.
∵面
,
,
,
兩兩垂直,以
為坐標原點,
以,
,
為
,
,
軸建系.
設,則
,
,
,
,
,
∴,
.
設的一個法向量為
,
∴,取
,則
.
由于是面
的法向量,
則.
∵二面角為銳二面角,∴余弦值為
.
()存在點
.
設,
,
∴,
,
,
∴,
.
∵面
,
.
若面
,∴
,
∴,
∴,∴
,∴存在
為
中點.
【題型】解答題
【結束】
19
【題目】已知函數(shù).
()當
時,求此函數(shù)對應的曲線在
處的切線方程.
()求函數(shù)
的單調(diào)區(qū)間.
()對
,不等式
恒成立,求
的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為
,點
在拋物線
上,過焦點
的直線
交拋物線
于
兩點.
(1)求拋物線的方程以及
的值;
(2)記拋物線的準線與
軸交于點
,若
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,
平面
,
.過
的平面交
于點
,交
于點
.
(l)求證: 平面
;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為
,三棱柱
的體積為
.若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 = (1,2sinθ),
= (sin(θ+
),1),θ
R。
(1) 若⊥
,求 tanθ的值;
(2) 若∥
,且 θ
(0,
),求 θ的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( )
A. 所在平面B.
所在平面
C. 所在平面D.
所在平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是邊長為3的正方形,
平面
,
平面
,
.
(1)證明:平面平面
;
(2)在上是否存在一點
,使平面
將幾何體
分成上下兩部分的體積比為
?若存在,求出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于古典概型的說法中正確的是( )
①試驗中所有可能出現(xiàn)的基本事件只有有限個;
②每個事件出現(xiàn)的可能性相等;
③每個基本事件出現(xiàn)的可能性相等;
④基本事件的總數(shù)為n,隨機事件A若包含k個基本事件,則.
A. ②④ B. ③④ C. ①④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com