【題目】將三顆骰子各擲一次,記事件A=“三個點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是( )
A. ,
B. ,
C. ,
D. ,
【答案】A
【解析】解:根據(jù)條件概率的含義,P(A|B)其含義為在B發(fā)生的情況下,A發(fā)生的概率,即在“至少出現(xiàn)一個6點(diǎn)”的情況下,“三個點(diǎn)數(shù)都不相同”的概率, ∵“至少出現(xiàn)一個6點(diǎn)”的情況數(shù)目為6×6×6﹣5×5×5=91,“三個點(diǎn)數(shù)都不相同”則只有一個6點(diǎn),共C31×5×4=60種,∴P(A|B)= ;
P(B|A)其含義為在A發(fā)生的情況下,B發(fā)生的概率,即在“三個點(diǎn)數(shù)都不相同”的情況下,“至少出現(xiàn)一個6點(diǎn)”的概率,∴P(B|A)= .
故選A.
根據(jù)條件概率的含義,明確條件概率P(A|B),P(B|A)的意義,即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點(diǎn)分別為
,離心率
,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓上的一動點(diǎn)(非長軸端點(diǎn)),
的延長線與橢圓交于
點(diǎn),
的延長線與橢圓交于
點(diǎn),若
面積為
,求直線
的方程.
【答案】(Ⅰ)(Ⅱ)
或
【解析】試題分析:(Ⅰ)由題意得,再由
橢圓的方程為
;(Ⅱ)①當(dāng)直線
斜率不存在時,不妨取
面積為
,不符合題意. ②當(dāng)直線
斜率存在時,設(shè)直線
, 由
得
,再求點(diǎn)
的直線
的距離
點(diǎn)
到直線
的距離為
面積為
∴
或
所求方程為
或
.
試題解析:
(Ⅰ)由題意得,∴
,
∵,∴
,
∴橢圓的方程為.
(Ⅱ)①當(dāng)直線斜率不存在時,不妨取
,
∴面積為
,不符合題意.
②當(dāng)直線斜率存在時,設(shè)直線
,
由化簡得
,
設(shè),
∴
,
∵點(diǎn)的直線
的距離
,
又是線段
的中點(diǎn),∴點(diǎn)
到直線
的距離為
,
∴面積為
,
∴,∴
,∴
,∴
或
,
∴直線的方程為
或
.
【題型】解答題
【結(jié)束】
25
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱中,
,
,點(diǎn)
是
的中點(diǎn),點(diǎn)
在
上.
(1)若異面直線和
所成的角為
,求
的長;
(2)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為
,則其長軸長為__________;若
為
的右焦點(diǎn),
為
的上頂點(diǎn),
為
上位于第一象限內(nèi)的動點(diǎn),則四邊形
的面積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)|a|≤1,|x|≤1時,關(guān)于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實數(shù)m的取值范圍是( )
A.[ ,+∞)
B.[ ,+∞)
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的一年收益與投資額成正比,其關(guān)系如圖(1);投資股票等風(fēng)險型產(chǎn)品的一年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖(2).(注:收益與投資額單位:萬元)
(1)分別寫出兩種產(chǎn)品的一年收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為橢圓C:
的左、右焦點(diǎn),D,E是橢圓的兩個頂點(diǎn),橢圓的離心率
,
的面積為
.若點(diǎn)
在橢圓C上,則點(diǎn)
稱為點(diǎn)M的一個“橢圓”,直線
與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問是否存在過左焦點(diǎn)的直線
,使得以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,
是
軸上的動點(diǎn),
,
分別切圓
于
,
兩點(diǎn).
()當(dāng)
的坐標(biāo)為
時,求切線
,
的方程.
()求四邊形
面積的最小值.
()若
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com