日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖為橢圓C:的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率,的面積為.若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)橢圓,直線與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的橢圓分別為P,Q.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)問是否存在過左焦點(diǎn)的直線,使得以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說明理由.

          【答案】(1);(2)直線方程為.

          【解析】

          試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、直線的標(biāo)準(zhǔn)方程、圓的標(biāo)準(zhǔn)方程、韋達(dá)定理、向量垂直的充要條件等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、計(jì)算能力.第一問,利用橢圓的離心率和三角形面積公式列出表達(dá)式,解方程組,得到基本量a和b的值,從而得到橢圓的方程;第二問,直線l過左焦點(diǎn),所以討論直線的斜率是否存在,當(dāng)斜率不存在時(shí),可以直接寫出直線方程,令直線與橢圓聯(lián)立,得到交點(diǎn)坐標(biāo),驗(yàn)證以PQ為直徑的圓不過坐標(biāo)原點(diǎn),當(dāng)斜率存在時(shí),直線與橢圓聯(lián)立,消參,利用韋達(dá)定理,證明,解出k的值.

          (1)由題意,,即,即 2

          得:

          橢圓的標(biāo)準(zhǔn)方程: 5

          (2)當(dāng)直線的斜率不存在時(shí),直線的方程為

          聯(lián)立,解得,

          不妨令,,所以對(duì)應(yīng)的“橢點(diǎn)”坐標(biāo),

          所以此時(shí)以為直徑的圓不過坐標(biāo)原點(diǎn). 7

          當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

          消去得,

          設(shè),則這兩點(diǎn)的“橢點(diǎn)”坐標(biāo)分別為

          由根與系數(shù)關(guān)系得: 9

          若使得以為直徑的圓過坐標(biāo)原點(diǎn),則

          ,即

          代入解得:

          所以直線方程為 12

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于函數(shù)f(x)= ,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N* , 且n≥2),令集合M={x|f2036(x)=x,x∈R},則集合M為(
          A.空集
          B.實(shí)數(shù)集
          C.單元素集
          D.二元素集

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將三顆骰子各擲一次,記事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是(
          A.
          B. ,
          C.
          D. ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱 平面, , 的中點(diǎn), 是等腰三角形 的中點(diǎn), 上一點(diǎn).

          )若證明 平面;

          求直線與平面所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 ,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為 ,A,B兩點(diǎn)的極坐標(biāo)分別為
          (1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
          (2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△AOB中, ,斜邊AB=4,D是AB中點(diǎn),現(xiàn)將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐,點(diǎn)C為圓錐底面圓周上一點(diǎn),且∠BOC=90°,
          (1)求圓錐的側(cè)面積;
          (2)求直線CD與平面BOC所成的角的大。唬ㄓ梅慈呛瘮(shù)表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y2=4x的準(zhǔn)線與x軸交于A點(diǎn),焦點(diǎn)是F,P是位于x軸上方的拋物線上的任意一點(diǎn),令m= ,當(dāng)m取得最小值時(shí),PA的斜率是(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為辦好省運(yùn)會(huì),計(jì)劃招募各類志愿者1.2萬人.為做好宣傳工作,招募小組對(duì)15-40歲的人群隨機(jī)抽取了100人,回答省運(yùn)會(huì)的有關(guān)知識(shí),根據(jù)統(tǒng)計(jì)結(jié)果制作了如下的統(tǒng)計(jì)圖表1、表2

          I)分別求出表2中的a、x的值;

          II)若在第2、3、4組回答完全正確的人中,用分層抽樣的方法抽取6人,則各組應(yīng)分別抽取多少人?

          III)在(II)的前提下,招募小組決定在所抽取的6人中,隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求獲獎(jiǎng)的2人均來自第3組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí), f(x)=-x+1

          (1)求f(0),f(2);

          (2)求函數(shù)f(x)的解析式;

          (3)若f(a-1)<3,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案