【題目】疫情期間,一同學通過網(wǎng)絡平臺聽網(wǎng)課,在家堅持學習.某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學,語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準備在上午下午的課程中各任選一節(jié)進行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學科(政治、歷史、地理)課程的概率為( )
A.B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)設直線與
,
軸的交點分別為
,
,若點
在曲線
位于第一象限的圖象上運動,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中e是自然對數(shù)的底數(shù),a,
)在點
處的切線方程是
.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設函數(shù),若
在
上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知橢圓的離心率為
,
分別是橢圈
的左、右焦點,橢圓
的焦點
到雙曲線
漸近線的距離為
.
(1)求橢圓的方程;
(2)直線與橢圓
交于
兩點,以線段
為直徑的圓經(jīng)過點
,且原點
到直線
的距離為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形
是梯形,
,
,平面
平面
,且
.
(1)求證:平面
;
(2)求二面角的正弦值;
(3)已知點在棱
上,且異面直線
與
所成角的余弦值為
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知
是曲線
:
上的動點,將
繞點
順時針旋轉(zhuǎn)
得到
,設點
的軌跡為曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線,
的極坐標方程;
(2)在極坐標系中,點,射線
與曲線
,
分別相交于異于極點
的
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,
是橢圓
的左,右焦點,橢圓上一點
滿足
軸,
,
.
(1)求橢圓的標準方程;
(2)過的直線
交橢圓
于
兩點,當
的內(nèi)切圓面積最大時,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com