日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的焦點為F,過點F的直線l交拋物線于AB兩點,以線段AB為直徑的圓交x軸于MN兩點,設(shè)線段AB的中點為Q.若拋物線C上存在一點到焦點F的距離等于3.則下列說法正確的是(

          A.拋物線的方程是B.拋物線的準(zhǔn)線是

          C.的最小值是D.線段AB的最小值是6

          【答案】BC

          【解析】

          求得拋物線的焦點和準(zhǔn)線方程,運用拋物線的定義可得p,進(jìn)而得到拋物線方程和準(zhǔn)線方程;求得,設(shè),直線l的方程為,聯(lián)立拋物線方程,運用韋達(dá)定理和弦長公式可得線段AB的最小值,可得圓Q的半徑,由中點坐標(biāo)公式可得Q的坐標(biāo),運用直角三角形的銳角三角函數(shù)的定義,可得所求的最小值.

          拋物線的焦點為,得拋物線的準(zhǔn)線方程為,

          到焦點的距離等于3,可得,解得,

          則拋物線的方程為,準(zhǔn)線為,故A錯誤,B正確;

          由題知直線的斜率存在,,

          設(shè),,直線的方程為,

          ,消去

          所以,,

          所以,所以AB的中點Q的坐標(biāo)為,

          ,故線段AB的最小值是4,即D錯誤;

          所以圓Q的半徑為

          在等腰中,,

          當(dāng)且僅當(dāng)時取等號,

          所以的最小值為,即C正確,

          故選:BC.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐與直四棱柱組合而成的幾何體中,四邊形是菱形,,,,,平面的中點.

          1)證明:平面;

          2)動點在線段上(包括端點),若二面角的余弦值為,求的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1) 討論的單調(diào)性;

          (2) 設(shè),當(dāng)時, ,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)設(shè)為函數(shù)的導(dǎo)函數(shù),求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若函數(shù)上有最大值,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (1)求的單調(diào)區(qū)間;

          (2)若上成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓 ()的一個焦點為橢圓內(nèi)一點,若橢圓上存在一點,使得,則橢圓的離心率的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

          (Ⅰ)求實數(shù)的取值范圍;

          (Ⅱ)記兩個極值點為,且,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖象與過原點的直線恰有四個交點,設(shè)四個交點中橫坐標(biāo)最大值為,則( )

          A. B. C. 0 D. 2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,動點分別與兩個定點,的連線的斜率之積為.

          (1)求動點的軌跡的方程;

          (2)設(shè)過點的直線與軌跡交于兩點,判斷直線與以線段為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案