日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (Ⅰ)設(shè)為函數(shù)的導(dǎo)函數(shù),求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若函數(shù)上有最大值,求實(shí)數(shù)的取值范圍.

          【答案】(Ⅰ)上單調(diào)遞增,在上單調(diào)遞減;(Ⅱ).

          【解析】

          )對(duì)函數(shù)求導(dǎo),分,兩種情況分析導(dǎo)函數(shù)正負(fù);

          )借助()中單調(diào)性結(jié)論,分類討論,當(dāng)時(shí),利用放縮,,分析即得解.

          ,;

          當(dāng)時(shí),上遞增,無減區(qū)間

          當(dāng)時(shí),令,

          所以,上單調(diào)遞增,在上單調(diào)遞減;

          )由()可知,當(dāng)時(shí),在(0,+∞)上遞增,

          上遞增,無最大值,不合題意;

          當(dāng)時(shí),

          上遞減,,

          上遞減,無最大值,不合題意;

          當(dāng)時(shí),,

          由()可知上單調(diào)遞增,在上單調(diào)遞減;

          設(shè),則;

          ;令

          上單調(diào)遞減,在單調(diào)遞增;

          ,即

          由此,當(dāng)時(shí),,即.

          所以,當(dāng)時(shí),.

          ,則,且.

          又因?yàn)?/span>,所以由零點(diǎn)存在性定理,存在,使得;

          當(dāng)時(shí),,即;當(dāng)時(shí),,即

          所以,上單調(diào)遞增,在上單調(diào)遞減,在上有最大值.

          綜上,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為橢圓上三個(gè)不同的點(diǎn),若坐標(biāo)原點(diǎn)的重心,則的面積為( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,是等邊三角形,,點(diǎn) 的中點(diǎn),連接

          1)證明:平面平面;

          2)若,且二面角,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】20191216日,公安部聯(lián)合阿里巴巴推出的“錢盾反詐機(jī)器人”正式上線,當(dāng)普通民眾接到電信網(wǎng)絡(luò)詐騙電話,公安部錢盾反詐預(yù)警系統(tǒng)預(yù)警到這一信息后,錢盾反詐機(jī)器人即自動(dòng)撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號(hào)”.某法制自媒體通過自媒體調(diào)查民眾對(duì)這一信息的了解程度,從5000多參與調(diào)查者中隨機(jī)抽取200個(gè)樣本進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40.

          1)完成下列列聯(lián)表,問:能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為200個(gè)參與調(diào)查者是否了解這一信息與性別有關(guān)?

          了解

          不了解

          合計(jì)

          男性

          女性

          合計(jì)

          2)該自媒體對(duì)200個(gè)樣本中了解這一信息的調(diào)查者按照性別分組,用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人給予一等獎(jiǎng),另外3人給予二等獎(jiǎng),求一等獎(jiǎng)與二等獎(jiǎng)獲得者都有女性的概率.

          附:

          P(K2k)

          0.01

          0.005

          0.001

          k

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

          質(zhì)量指標(biāo)

          頻數(shù)

          一年內(nèi)所需維護(hù)次數(shù)

          (1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

          (2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

          (3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買該服務(wù),或者每件都不購(gòu)買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買每件產(chǎn)品時(shí)是否值得購(gòu)買這項(xiàng)維護(hù)服務(wù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

          (1)求曲線的普通方程,曲線的參數(shù)方程;

          (2)若分別為曲線,上的動(dòng)點(diǎn),求的最小值,并求取得最小值時(shí),點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為F,過點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),以線段AB為直徑的圓交x軸于M,N兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q.若拋物線C上存在一點(diǎn)到焦點(diǎn)F的距離等于3.則下列說法正確的是(

          A.拋物線的方程是B.拋物線的準(zhǔn)線是

          C.的最小值是D.線段AB的最小值是6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.

          1)試估計(jì)該河流在8月份水位的眾數(shù);

          2)我們知道若該河流8月份的水位小于40米的頻率為f,該河流8月份的水位小于40米的情況下發(fā)生1級(jí)災(zāi)害的頻率為g,則該河流8月份的水位小于40且發(fā)生1級(jí)災(zāi)害的頻率為,其他情況類似.據(jù)此,試分別估計(jì)該河流在8月份發(fā)生12級(jí)災(zāi)害及不發(fā)生災(zāi)害的頻率,;

          3)該河流域某企業(yè),在8月份,若沒受12級(jí)災(zāi)害影響,利潤(rùn)為500萬元;若受1級(jí)災(zāi)害影響,則虧損100萬元;若受2級(jí)災(zāi)害影響則虧損1000萬元.現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

          方案

          防控等級(jí)

          費(fèi)用(單位:萬元)

          方案一

          無措施

          0

          方案二

          防控1級(jí)災(zāi)害

          40

          方案三

          防控2級(jí)災(zāi)害

          100

          試問,如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),且.

          (1)a的值及f(x)的定義域;

          (2)f(x)在區(qū)間上的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案