設(shè)函數(shù),記
的導(dǎo)函數(shù)
,
的導(dǎo)函數(shù)
,
的導(dǎo)函數(shù)
,…,
的導(dǎo)函數(shù)
,
.
(1)求;
(2)用n表示;
(3)設(shè),是否存在
使
最大?證明你的結(jié)論.
(1)(2)
(3)故當
或
時,
取
最大值.
解析試題分析:⑴易得,,
,所以
⑵不失一般性,設(shè)函數(shù)的導(dǎo)函數(shù)為
,其中
,常數(shù)
,
.
對求導(dǎo)得:
故由得:
①,
②,
③
由①得: ,
代入②得:,即
,其中
故得:.
代入③得:,即
,其中
.
故得:,
因此.
將代入得:
,其中
.
(3)由(1)知,
當時,
,
,故當
最大時,
為奇數(shù).
當時,
又,
,
,因此數(shù)列
是遞減數(shù)列
又,
,
故當或
時,
取最大值
.
考點:導(dǎo)數(shù) 數(shù)列綜合
點評:本題是數(shù)列綜合題,利用轉(zhuǎn)化法把非常規(guī)數(shù)列轉(zhuǎn)化成等差或等比數(shù)列來處理是關(guān)鍵,
屬難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(
)
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當且
時,令
,
(
),
(
)為曲線y=
上的兩動點,O為坐標原點,能否使得
是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)的值域為
,求
的值;
(Ⅱ)若函數(shù)的函數(shù)值均為非負數(shù),求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),其中
為正實數(shù).
(1)當時,求
的極值點;
(2)若為
上的單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間
(2)函數(shù)的圖象在
處切線的斜率為
若函數(shù)
在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com