【題目】已知橢圓:
的左、右焦點(diǎn)分別是
、
,離心率
,過點(diǎn)
的直線交橢圓
于
、
兩點(diǎn),
的周長(zhǎng)為16.
(1)求橢圓的方程;
(2)已知為原點(diǎn),圓
:
(
)與橢圓
交于
、
兩點(diǎn),點(diǎn)
為橢圓
上一動(dòng)點(diǎn),若直線
、
與
軸分別交于
、
兩點(diǎn),求證:
為定值.
【答案】(1) (2)見解析
【解析】試題分析:(1)根據(jù)的周長(zhǎng)為16,可得
,再根據(jù)離心率
,得出
,從而可得橢圓
的方程;(2)根據(jù)圓及橢圓的對(duì)稱性可得
,
兩點(diǎn)關(guān)于
軸對(duì)稱,設(shè)
,
,則
,從而得出直線
的方程,即可得到點(diǎn)
的橫坐標(biāo),同理可得
點(diǎn)的橫坐標(biāo),從而列出
的表達(dá)式,化簡(jiǎn)求值即可得到定值.
試題解析:(1)由題意得,則
,
由,解得
,
則,所以橢圓
的方程為
.
(2)證明:由條件可知, ,
兩點(diǎn)關(guān)于
軸對(duì)稱,設(shè)
,
,則
,由題可知,
,
∴,
.
又直線的方程為
,令
得點(diǎn)
的橫坐標(biāo)
,
同理可得點(diǎn)的橫坐標(biāo)
.
∴
,即
為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)
處的切線斜率為0.函數(shù)
(1)試用含的代數(shù)式表示
;
(2)求的單調(diào)區(qū)間;
(3)令,設(shè)函數(shù)
在
處取得極值,記點(diǎn)
,
,證明:線段
與曲線
存在異于
,
的公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形是菱形,
是矩形,
平面
,
,
,
,
為
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)設(shè)為線段
上的動(dòng)點(diǎn),二面角
的平面角的大小為30°,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(其中t為參數(shù),
).在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸所建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.設(shè)直線l與曲線C相交于A,B兩點(diǎn).
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)已知點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(其中t為參數(shù),
).在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸所建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.設(shè)直線l與曲線C相交于A,B兩點(diǎn).
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)已知點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于由正整數(shù)構(gòu)成的數(shù)列,若對(duì)任意
,
“且
,
也是
中的項(xiàng),則稱
為
數(shù)列”.設(shè)數(shù)列
|滿足
,
..
(1)請(qǐng)給出一個(gè)的通項(xiàng)公式,使得
既是等差數(shù)列也是“
數(shù)列”,并說明理由;
(2)根據(jù)你給出的通項(xiàng)公式,設(shè)的前
項(xiàng)和為
,求滿足
的正整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)已知定點(diǎn),直線
與曲線C分別交于P、Q兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在,
實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.
(Ⅰ)求圖中的值;
(Ⅱ)用樣本估計(jì)總體,以頻率作為概率,若在,
兩塊試驗(yàn)地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(Ⅲ)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | <>0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在2019年新研發(fā)了一種設(shè)備,為測(cè)試其性能,從設(shè)備
生產(chǎn)的流水線上隨機(jī)抽取30件零件作為樣本,測(cè)量其重量后,得到下表的相關(guān)數(shù)據(jù).為了評(píng)判某臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其重量為
,并根據(jù)以下不等式進(jìn)行評(píng)判(
表示相應(yīng)事件的概率):①
;②
;評(píng)判規(guī)則為:若同時(shí)滿足上述兩個(gè)不等式,則設(shè)備等級(jí)為
;僅滿足其中一個(gè),則等級(jí)為
;若全部不滿足,則等級(jí)為
.
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差
,以頻率值作為概率的估計(jì)值.
重量/ | 18 | 19 | 21 | 22 | 23 | 24 | 26 | 28 | 29 | 30 |
件數(shù)/個(gè) | 1 | 1 | 2 | 2 | 6 | 8 | 5 | 2 | 1 | 2 |
(1)試判斷設(shè)備的性能等級(jí);
(2)若或
的零件認(rèn)為是次品,其余為非次品.設(shè)30個(gè)樣本中次品個(gè)數(shù)為
,現(xiàn)需要從中取出全部次品和2件非次品形成
個(gè)小樣本,該公司從該小樣本中機(jī)抽取2件零件,求取出的兩件零件中恰有一件是次品的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com