【題目】設(shè)為曲線
上兩點(diǎn),
與
的橫坐標(biāo)之和為2.
(1)求直線的斜率;
(2)設(shè)為曲線
上一點(diǎn),曲線
在點(diǎn)
處的切線與直線
平行,且
,求直線
的方程.
【答案】(1)1;(2) .
【解析】試題分析:
(1)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)差法可求得直線AB的斜率.
(2)聯(lián)立直線與拋物線的方程,結(jié)合弦長公式可求得截距為.則直線AB的方程為
.
試題解析:
(1)設(shè)A(x1,y1),B(x2,y2),則,
,
,
x1+x2=2,
于是直線AB的斜率.
(2)由,得
.
設(shè)M(x3,y3),由題設(shè)知,于是M(1,
)
設(shè)直線AB的方程為,故線段AB的中點(diǎn)為N(1,1+m),|MN|=|m+
|.
將代入
得
.
當(dāng),即
時,
.
從而.
由題設(shè)知,即
,解得
.
所以直線AB的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:m∈{x|x2+(a﹣8)x﹣8a≤0},命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線.
(1)若當(dāng)a=1時,命題p∧q假命題,p∨q”為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0 , a1 , a2成等差數(shù)列.
(1)求(x+2)n展開式的中間項(xiàng);
(2)求(x+2)n展開式所有含x奇次冪的系數(shù)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次考試中,五位學(xué)生的數(shù)學(xué),物理成績?nèi)缦卤硭荆?/span>
(1)要從5名學(xué)生中選2人參加一項(xiàng)活動,求選中的學(xué)生中至少有一人的物理成績高于90分的概率;
(2)根據(jù)上表數(shù)據(jù),畫出散點(diǎn)圖并用散點(diǎn)圖說明物理成績與數(shù)學(xué)成績
之間線性相關(guān)關(guān)系的強(qiáng)弱,如果具有較強(qiáng)的線性相關(guān)關(guān)系,求
與
的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,請說明理由.
參考公式:
回歸直線的方程是,其中
,
,
是與
對應(yīng)的回歸估計值,
參考數(shù)據(jù): ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長為2的線段A B兩端點(diǎn)A和B分別在x軸和y軸上滑動,線段AB的中點(diǎn)M的軌跡為曲線C. (Ⅰ)求曲線C的方程;
(Ⅱ)點(diǎn)P(x,y)是曲線C上的動點(diǎn),求3x﹣4y的取值范圍;
(Ⅲ)已知定點(diǎn)Q(0, ),探究是否存在定點(diǎn)T(0,t)(t
)和常數(shù)λ滿足:對曲線C上任意一點(diǎn)S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當(dāng)且僅當(dāng)n=9時,數(shù)列{an}的前n項(xiàng)和Sn取得最大值,求該數(shù)列首項(xiàng)a1的取值范圍( )
A.( ,
)
B.[ ,
]
C.( ,
)
D.[ ,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C﹣AB﹣D的余弦值為 ,M,N分別是AC.BC的中點(diǎn),則EM,AN所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com