日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)A是雙曲線的右頂點(diǎn),若存在過點(diǎn)的直線與雙曲線的漸近線交于一點(diǎn)M,使得是以點(diǎn)M為直角頂點(diǎn)的直角三角形,則雙曲線的離心率( )

          A.存在最大值B.存在最大值

          C.存在最小值D.存在最小值

          【答案】B

          【解析】

          根據(jù)題意,寫出其右頂點(diǎn)的坐標(biāo),寫出雙曲線的漸近線方程,取,設(shè)出點(diǎn)M的坐標(biāo),從而得到,,根據(jù)題意可得,從而得到,進(jìn)一步整理得,根據(jù)方程有解,利用判別式大于等于零,求得,進(jìn)一步求得其離心率的范圍,得到結(jié)果.

          雙曲線的右頂點(diǎn)

          雙曲線的漸近線方程為,

          不妨取,

          設(shè),則,.

          若存在過的直線與雙曲線的漸近線交于一點(diǎn),

          使得是以為直角頂點(diǎn)的直角三角形,

          ,即,

          整理可得

          由題意可知此方程必有解,

          則判別式,得,

          ,解得,

          所以離心率存在最大值

          故選B.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,//,.

          1)證明://平面BCE.

          2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某品牌汽車4S店對(duì)最近100位采用分期付款的購(gòu)車者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示:

          付款方式

          1

          2

          3

          4

          5

          頻數(shù)

          40

          20


          10


          已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤(rùn)為1萬元,分2期或3期付款其利潤(rùn)為1.5萬元,分4期或5期付款,其利潤(rùn)為2萬元,用Y表示經(jīng)銷一輛汽車的利潤(rùn).

          (Ⅰ)求上表中的值;

          (Ⅱ)若以頻率作為概率,求事件購(gòu)買該品牌汽車的3位顧客中,至多有一位采用3期付款的概率;

          )求Y的分布列及數(shù)學(xué)期望EY

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“紅燈停,綠燈行”,這是我們每個(gè)人都應(yīng)該也必須遵守的交通規(guī)則.湊齊一撥人就過馬路﹣﹣不看交通信號(hào)燈、隨意穿行交叉路口的“中國(guó)式過馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國(guó)式過馬路”是衡量這座城市文明程度的重要指標(biāo).某調(diào)查機(jī)構(gòu)為了了解路人對(duì)“中國(guó)式過馬路”的態(tài)度,從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

          男性

          女性

          合計(jì)

          反感

          10

          不反感

          8

          合計(jì)

          30

          已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過馬路”的路人的概率是

          (1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認(rèn)為反感“中國(guó)式過馬路”與性別有關(guān)?

          (2)若從這30人中的女性路人中隨機(jī)抽取2人參加一項(xiàng)活動(dòng),記反感“中國(guó)式過馬路”的人數(shù)為X,求X的分布列及其數(shù)學(xué)期望.

          附:,其中n=a+b+c+d

          P(K2≥k0

          0.15

          0.10

          0.05

          0.025

          0.010

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)中點(diǎn),點(diǎn)中點(diǎn),點(diǎn)上一點(diǎn),且

          (1)證明:平面;

          (2)若,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列四個(gè)命題:

          函數(shù)的最大值為1

          ,的否定是

          為銳角三角形,則有;

          函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件.

          其中錯(cuò)誤的個(gè)數(shù)是( )

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

          1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

          2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.

          3)某經(jīng)銷商來收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:

          A:所有芒果以10/千克收購(gòu);

          B:對(duì)質(zhì)量低于250克的芒果以2/個(gè)收購(gòu),高于或等于250克的以3/個(gè)收購(gòu),通過計(jì)算確定種植園選擇哪種方案獲利更多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為4,且過點(diǎn).

          1)求橢圓C的方程;

          2)過的直線l交橢圓C兩點(diǎn),過Ax軸的垂線交橢圓C與另一點(diǎn)QQ不與重合).設(shè)的外心為G,求證為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

          喜歡游泳

          不喜歡游泳

          合計(jì)

          男生

          10

          女生

          20

          合計(jì)

          已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為

          (1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

          (2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

          (3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.

          下面的臨界值表僅供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:,其中

          查看答案和解析>>

          同步練習(xí)冊(cè)答案