【題目】已知函數(shù).
(1)設(shè),求函數(shù)
的單調(diào)增區(qū)間;
(2)設(shè),求證:存在唯一的
,使得函數(shù)
的圖象在點(diǎn)
處的切線l與函數(shù)
的圖象也相切;
(3)求證:對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.
【答案】(1)的單調(diào)增區(qū)間為(0,
];(2)證明見解析;(3)證明見解析.
【解析】
(1)求出導(dǎo)函數(shù),在函數(shù)定義域內(nèi)由
確定其增區(qū)間;
(2)先求出在
處的切線方程,設(shè)這條切線與
的圖象切于點(diǎn)
,由
,得出關(guān)于
的方程,然后證明此方程的解在
上存在且唯一.
(3)把問題轉(zhuǎn)化為在
上有解,令
,則只要
即可.
(1)h(x)=g(x)﹣x2=lnx﹣x2,x∈(0,+∞).
令,
解得.
∴函數(shù)h(x)的單調(diào)增區(qū)間為(0,].
(2)證明:設(shè)x0>1,,可得切線斜率
,
切線方程為:.
假設(shè)此切線與曲線y=f(x)=ex相切于點(diǎn)B(x1,),f′(x)=ex.
則k=,
∴.
化為:x0lnx0﹣lnx0﹣x0-1=0,x0>1.
下面證明此方程在(1,+∞)上存在唯一解.
令u(x0)=x0lnx0﹣lnx0﹣x0-1,x0>1.
,在x0∈(1,+∞)上單調(diào)遞增.
又u′(1)=-1,,
∴在
上有唯一實(shí)數(shù)解
,
,
,
遞減,
時(shí),
,
遞增,
而,∴
在
上無解,
而,∴
在
上有唯一解.
∴方程在(1,+∞)上存在唯一解.
即:存在唯一的x0,使得函數(shù)y=g(x)的圖象在點(diǎn)A(x0,g(x0))處的切線l與函數(shù)y=f(x)的圖象也相切.
(3)證明:,
令v(x)=ex﹣x﹣1,x>0.
∴v′(x)=ex﹣1>0,
∴函數(shù)v(x)在x∈(0,+∞)上單調(diào)遞增,
∴v(x)>v(0)=0.
∴,
∴不等式,a>0ex﹣x﹣1﹣ax<0,
即H(x)=ex﹣x﹣1﹣ax<0,
由對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立H(x)min<0.
H(x)=ex﹣x﹣1﹣ax,a,x∈(0,+∞).
H′(x)=ex﹣1﹣a,令ex﹣1﹣a=0,
解得x=>0,
函數(shù)H(x)在區(qū)間(0,)上單調(diào)遞減,在區(qū)間(
,+∞)上單調(diào)遞增.
∵H(0)=0,∴.
∴存在對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的零點(diǎn)個(gè)數(shù);
(3)當(dāng)時(shí),求證不等式
解集為空集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若是
的一個(gè)極值點(diǎn),且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(3-x)=f(x),f(-1)=3,數(shù)列{an}滿足a1=1且an=n(an+1-an)(n∈N*),則f(a36)+f(a37)=( 。
A. B.
C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的
A | B | C | D | E | F |
這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )
A. 360種 B. 432種 C. 456種 D. 480種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的一個(gè)側(cè)面
為等邊三角形,且平面
平面
,四邊形
是平行四邊形,
,
,
.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于正三角形,挖去以三邊中點(diǎn)為頂點(diǎn)的小正三角形,得到一個(gè)新的圖形,這樣的過程稱為一次“鏤空操作“,設(shè)
是一個(gè)邊長(zhǎng)為1的正三角形,第一次“鏤空操作”后得到圖1,對(duì)剩下的3個(gè)小正三角形各進(jìn)行一次“鏤空操作”后得到圖2,對(duì)剩下的小三角形重復(fù)進(jìn)行上述操作,設(shè)
是第
次挖去的小三角形面積之和(如
是第1次挖去的中間小三角形面積,
是第2次挖去的三個(gè)小三角形面積之和),
是前
次挖去的所有三角形的面積之和,則
( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)為
,直線
與
交于
,
兩點(diǎn),且與
軸交于點(diǎn)
.
(1)若直線的斜率
,且
,求
的值;
(2)若,
軸上是否存在點(diǎn)
,總有
?若存在,求出點(diǎn)
坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
在區(qū)間
上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有
恒成立,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com