日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),.

          (Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若上恒成立,求正數(shù)的取值范圍;

          (Ⅲ)證明:.

          【答案】(I)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(II);(III)詳見解析.

          【解析】

          (Ⅰ)求出導(dǎo)函數(shù),解不等式可得單調(diào)遞增、遞減區(qū)間;(Ⅱ)采用參數(shù)討論的方法求出函數(shù)在區(qū)間上的最小值,通過逐步排除可得正數(shù)的取值范圍;(Ⅲ)根據(jù)(Ⅱ)中的結(jié)論,當(dāng)時(shí)有,然后令,代入整理得,相加后可得所證不等式.

          (Ⅰ)當(dāng)時(shí),

          所以,

          則當(dāng)時(shí),,則單調(diào)遞增;

          當(dāng)時(shí),,則單調(diào)遞減;

          所以單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          (Ⅱ)因?yàn)?/span>,,則,

          .

          ①當(dāng) ,時(shí),有,

          故當(dāng),則上是減函數(shù),

          所以當(dāng)時(shí),,與恒成立矛盾。

          ②當(dāng)時(shí),,此時(shí)上成立,

          所以上是增函數(shù),

          所以,

          上恒成立.

          綜上所述,所求的取值范圍為

          (Ⅲ)由(Ⅱ)知當(dāng)時(shí),上恒成立,

          ,

          當(dāng)時(shí),則有,

          所以當(dāng)時(shí),

          ,則有,

          ,,

          將上述個(gè)不等式依次相加得:

          整理得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖F1、F2為雙曲線C的左、右焦點(diǎn),動點(diǎn)P(x0,y0)(y0≥1)在雙曲線C的右支上.設(shè)∠F1PF2的平分線與x軸、y軸分別交于點(diǎn)M(m,0)、N.

          (1)m的取值范圍;

          (2)設(shè)過點(diǎn)F1、N的直線l與雙曲線C交于DE兩點(diǎn),求F2DE面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個(gè)1,個(gè)2,,個(gè)n.證明:并確定使等號成立的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線 , ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

          ①不論為何值時(shí), 都互相垂直;

          ②當(dāng)變化時(shí), 分別經(jīng)過定點(diǎn)A0,1)和B-1,0);

          ③不論為何值時(shí), 都關(guān)于直線對稱;

          ④如果交于點(diǎn),則的最大值是1;

          其中,所有正確的結(jié)論的個(gè)數(shù)是(

          A. 1 B. 2 C. 3 D. 4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,.

          (1)解不等式

          (2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意的恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

          年齡x

          28

          32

          38

          42

          48

          52

          58

          62

          收縮壓單位

          114

          118

          122

          127

          129

          135

          140

          147

          其中:,,

          請畫出上表數(shù)據(jù)的散點(diǎn)圖;

          請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到

          若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg70歲的老人,屬于哪類人群?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三點(diǎn)A(a,0),B(0,b),C(2,2),其中a>0,b>0.

          (1)若O是坐標(biāo)原點(diǎn),且四邊形OACB是平行四邊形,試求a,b的值.

          (2)若A,B,C三點(diǎn)共線,試求a+b的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓.

          1)若圓的切線在軸、軸上的截距相等,求切線方程;

          2)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,且有為坐標(biāo)原點(diǎn)),求使取得最小值時(shí)點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案