日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個1,個2,,個n.證明:并確定使等號成立的條件.

          【答案】見解析

          【解析】

          對正整數(shù)n的位數(shù)使用數(shù)學歸納法.

          是一位數(shù),即時,所證式顯然成立,

          這是因為,此時的十進制表達式中只有一位數(shù)字,

          ,其余,所以,左邊==右邊.

          假設當正整數(shù)不超過k位,即時,結論皆成立.

          現(xiàn)考慮位數(shù),即時的情形.

          的首位數(shù)字為r.則. ①

          ,則在數(shù)的各位數(shù)字中,,其余.

          顯然,.

          ,記的各位數(shù)字中含有個1,個2,,個r,…,個9.

          的各位數(shù)字中,含有個r、個j.

          注意到,正整數(shù)不超過k位.

          由歸納法假設,對

          則當位數(shù)時,結論也成立.

          故由數(shù)學歸納法,知對一切正整數(shù),結論皆成立.

          欲使等號成立,由證明過程,知要么為一位數(shù);要么在的位數(shù)大于或等于2時,由式②,必須,此時,由式①得

          可表示為的形式.

          上述條件也是充分的,當能夠表成以上形式時,有,其余.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】下列命題中正確的是( )

          A. 為真命題,則為真命題 B. 恒成立

          C. 命題“”的否定是“ D. 命題“若”的逆否命題是“若,則

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】拋物線的焦點是.問:是否存在內接等腰直角三角形,該三角形的一條直角邊過點?如果存在,存在幾個?如果不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C的左、右頂點分別為AB,離心率為,點P1)為橢圓上一點.

          1)求橢圓C的標準方程;

          2)如圖,過點C0,1)且斜率大于1的直線l與橢圓交于MN兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),(,)的部分圖像如圖所示.

          1)求函數(shù)的解析式及圖像的對稱軸方程;

          2)把函數(shù)圖像上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移個單位,得到函數(shù)的圖象,求關于x的方程時所有的實數(shù)根之和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

          (1)求圓C的方程;

          (2)過點M(10)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】[選修4—4:坐標系與參數(shù)方程]

          在直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)以原點為極點x軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為

          Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;

          Ⅱ)設與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (Ⅰ)若,求函數(shù)的單調區(qū)間;

          (Ⅱ)若上恒成立,求正數(shù)的取值范圍;

          (Ⅲ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,橢圓Cab0)的左、右焦點分別為F1,F2P為橢圓C上一點,且PF2垂直于x軸,連結PF1并延長交橢圓于另一點Q,設

          1)若點P的坐標為(2,3),求橢圓C的方程及λ的值;

          2)若4≤λ≤5,求橢圓C的離心率的取值范圍.

          查看答案和解析>>

          同步練習冊答案