日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定圓的圓心為,動(dòng)圓過點(diǎn),且和圓相切,動(dòng)圓的圓心的軌跡記為
          (Ⅰ)求曲線的方程;
          (Ⅱ)若點(diǎn)為曲線上一點(diǎn),試探究直線:與曲線是否存在交點(diǎn)? 若存在,求出交點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          (Ⅰ);(Ⅱ)直線與曲線總有兩個(gè)交點(diǎn),.

          解析試題分析:(Ⅰ)先找出圓心和半徑,設(shè)出動(dòng)圓的圓心和半徑,因?yàn)閯?dòng)圓過點(diǎn),且和圓相切,所以,所以點(diǎn)的軌跡是以為焦點(diǎn)的橢圓;(Ⅱ)討論的情況,分兩種,當(dāng)時(shí),顯然有兩個(gè)交點(diǎn),當(dāng)時(shí),聯(lián)立方程組,消解方程,看解的個(gè)數(shù).
          試題解析:(Ⅰ)圓的圓心為,半徑.
          設(shè)動(dòng)圓的圓心為半徑為,依題意有.
          ,可知點(diǎn)在圓內(nèi),從而圓內(nèi)切于圓,故,
          ,所以點(diǎn)的軌跡是以為焦點(diǎn)的橢圓.       3分
          設(shè)橢圓方程為. 由,,可得.
          故曲線的方程為.        6分
          (Ⅱ)當(dāng)時(shí),由可得.此時(shí)直線的方程為:,
          與曲線有兩個(gè)交點(diǎn).       8分
          當(dāng)時(shí),直線的方程為:,
          聯(lián)立方程組消去得,   ①
          由點(diǎn)為曲線上一點(diǎn),得,可得.
          于是方程①可以化簡(jiǎn)為. 解得.
          當(dāng)代入方程可得
          當(dāng)代入方程可得.顯然時(shí),.
          綜上,直線與曲線總有兩個(gè)交點(diǎn),.        13分
          考點(diǎn):1.求橢圓方程;2.判斷直線與橢圓的交點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且.

          (Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓+=1上;
          (Ⅱ)若M、N為橢圓上的兩點(diǎn),且直線GM與直線GN的斜率之積為,求證:直線MN過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          給定橢圓 ,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,且其短軸上的一個(gè)端點(diǎn)到的距離為.
          (Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程;
          (Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線,使得與橢圓都只有一個(gè)交點(diǎn),試判斷是否垂直,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長(zhǎng)為的正方形.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知A、B、C是橢圓W:上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
          (I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
          (II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率為,且過點(diǎn).
          (1)求橢圓的方程;
          (2)若過點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問在軸上是否存在點(diǎn),使是與無關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左右焦點(diǎn)坐標(biāo)分別是,離心率,直線與橢圓交于不同的兩點(diǎn).
          (1)求橢圓的方程;
          (2)求弦的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓(a>b>0)拋物線,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:



          4

          1

          2
          4

          2
          (1)求的標(biāo)準(zhǔn)方程;(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過原點(diǎn)O,若,

          (i) 求的最值.
          (ii) 求四邊形ABCD的面積;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知兩點(diǎn),點(diǎn)在以為焦點(diǎn)的橢圓上,且、 構(gòu)成等差數(shù)列.

          (1)求橢圓的方程;
          (2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案