已知A、B、C是橢圓W:上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由。
(I).
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),四邊形OABC不可能是菱形.
解析試題分析:
思路分析:(I)根據(jù)四邊形OABC為菱形, AC與OB相互垂直平分. 注意確定.
(II)假設(shè)四邊形OABC為菱形. 因?yàn)辄c(diǎn)B不是W的頂點(diǎn),且直線AC不過(guò)原點(diǎn),所以可設(shè)AC的方程為.
由消去
應(yīng)用韋達(dá)定理確定AC的中點(diǎn)為M(
,
).
得到直線OB的斜率為. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/a/zmdzc.png" style="vertical-align:middle;" />,所以AC與OB不垂直.所以當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),四邊形OABC不可能是菱形.
解:(I)橢圓W:的右頂點(diǎn)B的坐標(biāo)為(2,0).因?yàn)樗倪呅蜲ABC為菱形,所以AC與OB相互垂直平分. 所以可設(shè)A(1,
),代入橢圓方程得
,即
. 所以菱形OABC的面積是
.
(II)假設(shè)四邊形OABC為菱形. 因?yàn)辄c(diǎn)B不是W的頂點(diǎn),且直線AC不過(guò)原點(diǎn),所以可設(shè)AC的方程為.
由消去
并整理得
.
設(shè)A,C
,則
,
.
所以AC的中點(diǎn)為M(,
).
因?yàn)镸為AC和OB的交點(diǎn),所以直線OB的斜率為.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/a/zmdzc.png" style="vertical-align:middle;" />,所以AC與OB不垂直. 所以O(shè)ABC不是菱形,與假設(shè)矛盾.
所以當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),四邊形OABC不可能是菱形.
考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,菱形的性質(zhì)。
點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為拋物線
的焦點(diǎn),拋物線上點(diǎn)
滿足
(Ⅰ)求拋物線的方程;
(Ⅱ)點(diǎn)的坐標(biāo)為(
,
),過(guò)點(diǎn)F作斜率為
的直線與拋物線交于
、
兩點(diǎn),
、
兩點(diǎn)的橫坐標(biāo)均不為
,連結(jié)
、
并延長(zhǎng)交拋物線于
、
兩點(diǎn),設(shè)直線
的斜率為
,問(wèn)
是否為定值,若是求出該定值,若不是說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)過(guò)點(diǎn)且與直線
相切的動(dòng)圓的圓心軌跡為
.點(diǎn)
、
在軌跡
上,且關(guān)于
軸對(duì)稱,過(guò)線段
(兩端點(diǎn)除外)上的任意一點(diǎn)作直線
,使直線
與軌跡
在點(diǎn)
處的切線平行,設(shè)直線
與軌跡
交于點(diǎn)
、
.
(1)求軌跡的方程;
(2)證明:;
(3)若點(diǎn)到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對(duì)稱.
(Ⅰ)若點(diǎn)的坐標(biāo)為
,求
的值;
(Ⅱ)若橢圓上存在點(diǎn)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)
以及橢圓
的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓
上.
(1)求拋物線和橢圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線交拋物線
于
兩不同點(diǎn),交
軸于點(diǎn)
,已知
,則
是否為定值?若是,求出其值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定圓的圓心為
,動(dòng)圓
過(guò)點(diǎn)
,且和圓
相切,動(dòng)圓的圓心
的軌跡記為
.
(Ⅰ)求曲線的方程;
(Ⅱ)若點(diǎn)為曲線
上一點(diǎn),試探究直線:
與曲線
是否存在交點(diǎn)? 若存在,求出交點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的方程為,其離心率為
,經(jīng)過(guò)橢圓焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線y=x-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點(diǎn),且OA⊥OB,若存在,求出該直線方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,雙曲線與拋物線
相交于
,直線AC、BD的交點(diǎn)為P(0,p)。
(I)試用m表示
(II)當(dāng)m變化時(shí),求p的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com