日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為為參數(shù),).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是.

          (1)若直線與圓有公共點(diǎn),試求實(shí)數(shù)的取值范圍;

          (2)當(dāng)時,過點(diǎn)且與直線平行的直線交圓兩點(diǎn),求的值.

          【答案】(1) (2)

          【解析】試題分析:(1)根據(jù)極坐標(biāo)與普通方程的互化公式求出直線的直角坐標(biāo)方程,消參得出圓的普通方程, 直線與圓有公共點(diǎn),則圓心到直線的距離,即可求出范圍;(2)將直線的參數(shù)方程代入曲線方程,根據(jù)t的幾何意義求值即可.

          試題解析:

          (1)由,

          ,

          故直線的直角坐標(biāo)方程為.

          所以圓的普通方程為.

          若直線與圓有公共點(diǎn),則圓心到直線的距離,即,

          故實(shí)數(shù)的取值范圍為.

          (2)因?yàn)橹本的傾斜角為,且過點(diǎn)

          所以直線的參數(shù)方程為為參數(shù)),①

          的方程為,②

          聯(lián)立①②,得,

          設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,

          ,

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了提升學(xué)生數(shù)學(xué)建模的核心素養(yǎng),某校數(shù)學(xué)興趣活動小組指導(dǎo)老師給學(xué)生布置了一項(xiàng)探究任務(wù):如圖,有一張邊長為27cm的等邊三角形紙片ABC,從中裁出等邊三角形紙片作為底面,從剩余梯形中裁出三個全等的矩形作為側(cè)面,圍成一個無蓋的三棱柱(不計(jì)損耗).

          1)若三棱柱的側(cè)面積等于底面積,求此三棱柱的底面邊長;

          2)當(dāng)三棱柱的底面邊長為何值時,三棱柱的體積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)(

          A.向左平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變

          B.向左平移個單位長度,縱坐標(biāo)伸長到原來的3倍橫坐標(biāo)不變

          C.向右平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變

          D.向右平移個單位長度,縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,是以為斜邊的等腰直角三角形,的中點(diǎn),的中點(diǎn).

          1)求證:平面;

          2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國務(wù)院面對“突發(fā)災(zāi)難”果斷采取措施,舉國上下,萬眾一心支援武漢,全國各地醫(yī)療隊(duì)陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔(dān)“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導(dǎo)”活動,為抗疫前線醫(yī)務(wù)工作者子女開展在線輔導(dǎo).春節(jié)期間隨機(jī)安排甲乙兩位志愿者為一位初中生輔導(dǎo)功課共3次,每位志愿者至少輔導(dǎo)1次,每一次只有1位志愿者輔導(dǎo),到甲恰好輔導(dǎo)兩次的概率為( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論函數(shù)上的單調(diào)性;

          2)是否存在正實(shí)數(shù),使的圖象有唯一一條公切線,若存在,求出的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱中,側(cè)面為菱形,在側(cè)面上的投影恰為的中點(diǎn),的中點(diǎn).

          (Ⅰ)證明:∥平面;

          (Ⅱ)若在線段上是否存在點(diǎn)不與,重合)使得直線與平面成角的正弦值為若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn)O,其右焦點(diǎn)為F10),以坐標(biāo)原點(diǎn)O為圓心,橢圓短半軸長為半徑的圓與直線xy0的相切.

          1)求橢圓C的方程;

          2)經(jīng)過點(diǎn)F的直線l1,l2分別交橢圓CA、BC、D四點(diǎn),且l1l2,探究:是否存在常數(shù)λ,使恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)(萬元)和年銷售量(單位:)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

          (萬元)

          2

          4

          5

          3

          6

          (單位:

          2.5

          4

          4.5

          3

          6

          1)根據(jù)表中數(shù)據(jù)建立年銷售量關(guān)于年宣傳費(fèi)的回歸方程;

          2)已知這種產(chǎn)品的年利潤,的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:

          ①當(dāng)年宣傳費(fèi)為10萬元時,年銷售量及年利潤的預(yù)報(bào)值是多少?

          ②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.

          附:問歸方程中的斜率和截距的最小二乘估計(jì)公式分別為,.

          參考數(shù)據(jù):,.

          查看答案和解析>>

          同步練習(xí)冊答案