日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓和雙曲線有共同的焦點(diǎn),,點(diǎn),的交點(diǎn),若是銳角三角形,則橢圓離心率的取值范圍是( )

          A. B. C. D.

          【答案】C

          【解析】

          設(shè)∠F1PF2θ,則,得出,利用橢圓和雙曲線的焦點(diǎn)三角形的面積公式可得出,結(jié)合c2,可得出,然后將橢圓和雙曲線的方程聯(lián)立,求出交點(diǎn)P的橫坐標(biāo),利用該點(diǎn)的橫坐標(biāo)位于區(qū)間(﹣cc),得出,可得出,從而得出橢圓C1的離心率e的取值范圍.

          解:設(shè)∠F1PF2θ,則,所以,,則

          由焦點(diǎn)三角形的面積公式可得,所以,,

          雙曲線的焦距為4,橢圓的半焦距為c2,則b2a2c2a243,

          ,所以,橢圓C1的離心率

          聯(lián)立橢圓C1和雙曲線C2的方程,

          ,得,

          由于△PF1F2為銳角三角形,則點(diǎn)P的橫坐標(biāo),則,所以,

          因此,橢圓C1離心率e的取值范圍是

          故選:C

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,).

          (1)求選取的市民年齡在內(nèi)的人數(shù);

          (2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點(diǎn),焦點(diǎn),圓O的直徑為

          (1)求橢圓C及圓O的方程;

          (2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P

          ①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);

          ②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

          )判斷函數(shù)上是否具有性質(zhì)?說明理由.

          )若上具有性質(zhì),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=

          (e為自然對(duì)數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點(diǎn)個(gè)數(shù)為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在高為6的等腰梯形中, ,且, ,將它沿對(duì)稱軸折起,使平面平面.如圖2,點(diǎn)中點(diǎn),點(diǎn)在線段上(不同于, 兩點(diǎn)),連接并延長至點(diǎn),使.

          (1)證明: 平面;

          (2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 有兩個(gè)不同的零點(diǎn).

          (1)求的取值范圍;

          (2)設(shè) 的兩個(gè)零點(diǎn),證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱柱中,側(cè)棱底面,,,棱的中點(diǎn).

          (1)證明

          (2)求二面角的余弦值;

          (3)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某投資公司計(jì)劃投資兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為.(注:利潤與投資金額單位:萬元)

          (1)該公司已有100萬元資金,并全部投入,兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

          (2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

          【答案】(1);(2)20,28.

          【解析】

          1)設(shè)投入產(chǎn)品萬元,則投入產(chǎn)品萬元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤總和的表達(dá)式.2)利用基本不等式求得利潤的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.

          (1)其中萬元資金投入產(chǎn)品,則剩余的(萬元)資金投入產(chǎn)品,

          利潤總和為:

          (2)因?yàn)?/span>,

          所以由基本不等式得:,

          當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤28萬.

          此時(shí)投入A產(chǎn)品20萬元,B產(chǎn)品80萬元.

          【點(diǎn)睛】

          本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問題,考查利用基本不等式求最大值,屬于中檔題.

          型】解答
          結(jié)束】
          20

          【題目】已知曲線.

          (1)求曲線在處的切線方程;

          (2)若曲線在點(diǎn)處的切線與曲線相切,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案