日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的前項(xiàng)和為,數(shù)列{bn},{cn}滿足 ,其中

          (1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式;

          (2)若存在實(shí)數(shù)λ,使得對(duì)一切,有bn≤λ≤cn,求證:數(shù)列{an}是等差數(shù)列.

          【答案】(1)cn=1.(2)見(jiàn)解析.

          【解析】試題分析:(1)由題意得,根據(jù)等差數(shù)列的通項(xiàng)公式求得,即可的通項(xiàng)公式;

          (2)由,遞推化簡(jiǎn),得到,因?yàn)橐磺?/span>,都有,得到,得到,再利用等差數(shù)列的性質(zhì),即可得到數(shù)列為等差數(shù)列。

          試題解析: (1)因?yàn)閧an}是公差為2的等差數(shù)列,

          所以ana1+2(n-1),a1n-1,從而 (n+2)

          cn-(a1n-1)=n+2,即cn=1.

          2)由(n1)bnan1,

          n(n1) bnnan1Sn

          (n1)(n2) bn+1(n1)an2Sn1,

          兩式相減,并化簡(jiǎn)得an2an1(n2) bn+1nbn

          從而 (n2) cn-[an1(n1) bn]

          (n1) bn

          (n1) bn

          (n2)( bnbn+1).

          因此cn ( bnbn+1).

          因?yàn)閷?duì)一切nN*,有bn≤λ≤cn,所以λ≤cn (bnbn+1)≤λ,

          bn=λ,cn=λ.

          所以 (n+1)λ=an+1, ①

          (n+2)λ= (an+1an+2)-, ②

          ②-①,得 (an+2an+1)=λ,即an+2an+1=2λ.

          an+1an=2λ (n≥2).

          又2λ=a2a2a1,則an+1an=2λ (n≥1).

          所以數(shù)列{an}是等差數(shù)列.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐中, ,側(cè)面為等邊三角形, , .

          (Ⅰ)證明: 平面;

          (Ⅱ)求與平面所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,平面平面, , , .

          (1)求證: 平面;

          (2)求四面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= ,g(x)=

          1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值

          2)若, ,函數(shù)滿足對(duì)任意x1x2),都有恒成立,求的取值范圍;

          3)若,函數(shù)=f(x)+ g(x),G()有兩個(gè)極值點(diǎn)x1,x2,其中x1,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列中, ,前項(xiàng)和滿足).

          ⑴ 求數(shù)列的通項(xiàng)公式;

          ,求數(shù)列的前項(xiàng)和;

          ⑶ 是否存在整數(shù)對(duì)(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對(duì);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

          (2)若函數(shù)在定義域上為單調(diào)增函數(shù).

          ①求最大整數(shù)值;

          ②證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,三棱臺(tái)中, 側(cè)面與側(cè)面是全等的梯形,若,且.

          (Ⅰ)若, ,證明: ∥平面;

          (Ⅱ)若二面角,求平面與平面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

          經(jīng)常使用

          偶爾或不用

          合計(jì)

          30歲及以下

          70

          30

          100

          30歲以上

          60

          40

          100

          合計(jì)

          130

          70

          200

          (1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

          (2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

          參考公式: ,其中

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直三棱柱中,,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn).

          I)若平面,求

          II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案