日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 三棱錐,底面為邊長為的正三角形,平面平面,,上一點,,為底面三角形中心.

          (Ⅰ)求證∥面;
          (Ⅱ)求證:;
          (Ⅲ)設中點,求二面角的余弦值.

          (Ⅰ)先證 (Ⅱ)先證平面 (Ⅲ)

          解析試題分析:(Ⅰ)連結(jié)于點,連結(jié).
          為正三角形的中心,∴,
          中點.又, ∴,                  
          平面平面
          ∥面.              
          (Ⅱ),且中點, ∴,
          又平面平面,
          平面,            
          由(Ⅰ)知,
          平面,∴                  
          連結(jié),則,又,
          平面,∴
          (Ⅲ)由(Ⅰ)(Ⅱ)知,兩兩互相垂直,且中點,所以分別以所在直線為軸,建立空間直角坐標系,如圖

          ,則

          設平面的法向量為,則
          ,則.                              
          由(Ⅱ)知平面,∴為平面的法向量,
          ,
          由圖可知,二面角的余弦值為 . 
          考點:直線與平面平行的判定;直線與平面垂直的性質(zhì);二面角的平面角及求法.
          點評:本題考查直線與平面的平行的判斷,在與平面垂直的性質(zhì)定理的應用,二面角的求法,考查空間想象能力與計算能力,以及邏輯推理能力.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知三棱錐,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

          (1) 求證:AB⊥平面ADC;
          (2) 求三棱錐的體積;
          (3) 求二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,四棱錐的底面是邊長為2的菱形,.已知 .

          (Ⅰ)證明:
          (Ⅱ)若的中點,求三菱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖:是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點,(1) 求證:平面。(2) 求二面角 P-BC-A 的大小。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,空間四邊形的對棱、的角,且,平行于的截面分別交、、、、

          (1)求證:四邊形為平行四邊形;
          (2)的何處時截面的面積最大?最大面積是多少?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設點E、F分別為棱AC、AD的中點.

          (Ⅰ)求證:DC平面ABC;
          (Ⅱ)設,求三棱錐A-BFE的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          在直三棱柱中,

          (1)求異面直線 與所成角的大;
          (2)求多面體的體積。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知為空間四邊形的邊上的點,且,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖所示,已知正方形和矩形所在的平面互相垂直, 是線段的中點。

          (1)證明:∥平面
          (2)求異面直線所成的角的余弦值。

          查看答案和解析>>

          同步練習冊答案