日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),將此函數(shù)圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有(

          ①繞著x軸上一點旋轉(zhuǎn);②以x軸為軸,作軸對稱;

          ③沿x軸正方向平移;④以x軸的某一條垂線為軸,作軸對稱;

          A.①③B.③④C.②③D.②④

          【答案】B

          【解析】

          對各選項的變換,計算變換后的函數(shù)解析式,再與原函數(shù)的解析式比較后可得正確的選項.

          對于①,設(shè)軸上的點為

          則繞該點旋轉(zhuǎn)后所得圖象與原函數(shù)的圖象關(guān)于對稱,

          故變換后圖象的解析式為

          的圖象與圖象重合,

          對任意的恒成立,

          ,則.

          ,

          為偶數(shù),則,

          因為,此時的圖象與圖象不重合;

          為奇數(shù),則,

          因為,故此時的圖象與圖象不重合;

          故①錯誤.

          對于②,以x軸為軸,作軸對稱,

          故變換后圖象的解析式為,

          因為,故的圖象與不重合,故②錯誤.

          對于③,若的圖象向右平移個單位,

          則變換后圖象的解析式為

          此時變換后的圖象與原函數(shù)的圖象重合,故③正確.

          對于④,取直線,以該直線為軸,作軸對稱,

          則變換后所得圖象的解析式為,

          此時變換后的圖象與原函數(shù)的圖象重合,故④正確.

          故選:B.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,設(shè)曲線與曲線的公共弦所在直線為l.

          1)在直角坐標系下,求曲線與曲線的普通方程;

          2)若以坐標原點為中心,直線l順時針方向旋轉(zhuǎn)后與曲線、曲線分別在第一象限交于A、B兩點,求.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知F1(﹣c,0),F2c,0)分別為雙曲線1a0,b0)的左、右焦點,以坐標原點O為圓心,c為半徑的圓與雙曲線在第二象限交于點P,若tanPF1F2,則該雙曲線的離心率為_____

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

          A.πB.πC.4D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率為,并且經(jīng)過點

          1)求橢圓的標準方程;

          2)一條斜率為的直線交橢圓于兩點(不同于),直線的斜率分別為,滿足,試判斷直線是否經(jīng)過定點,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

          1)求曲線的極坐標方程與曲線的直角坐標方程;

          2)設(shè)、為曲線上位于第一,二象限的兩個動點,且,射線,交曲線分別于點,.面積的最小值,并求此時四邊形的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,其中是實常數(shù).

          1)若,求的取值范圍;

          2)若,求證:函數(shù)的零點有且僅有一個;

          3)若,設(shè)函數(shù)的反函數(shù)為,若是公差的等差數(shù)列且均在函數(shù)的值域中,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為新四大發(fā)明之一,短時間內(nèi)就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,設(shè)月份代碼為x,市場占有率為y%),得結(jié)果如下表

          年月

          2019.11

          2019.12

          2020.1

          2020.2

          2020.3

          2020.4

          x

          1

          2

          3

          4

          5

          6

          y

          9

          11

          14

          13

          18

          19

          1)觀察數(shù)據(jù),可用線性回歸模型擬合yx的關(guān)系,請用相關(guān)系數(shù)加以說明(精確到0.001);

          2)求y關(guān)于x的線性回歸方程,并預(yù)測該公司20206月份的市場占有率;

          3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車投入市場,現(xiàn)有采購成本分別為1000/輛和800/輛的甲、乙兩款車型,報廢年限不相同.考慮到公司的經(jīng)濟效益,該公司決定先對這兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命統(tǒng)計如下表:

          報廢年限

          車輛數(shù)

          車型

          1

          2

          3

          4

          總計

          甲款

          10

          40

          30

          20

          100

          乙款

          15

          35

          40

          10

          100

          經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),如果你是該公司的負責人,你會選擇采購哪款車型?

          參考數(shù)據(jù):,,.

          參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計公式分別為,.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率,直線與圓相切.

          1)求橢圓的方程;

          2)過點的直線與橢圓交于不同兩點,線段的中垂線為,求直線軸上的截距的取值范圍.

          查看答案和解析>>

          同步練習冊答案