【題目】已知多面體中,
為矩形,
平面
,
,且
,
,
,點
為
的中點.
(1)求證:平面
;
(2)求二面角的平面角的正弦值.
【答案】(1)證明見解析過程;(2).
【解析】
(1)連接交于
點,連接
,利用平行四邊形的判定定理和性質(zhì)定理,結(jié)合線面平行的判定定理證明即可;
(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式求解即可.
(1)連接交于
點,因為
是矩形,所以
是
的中點,連接
.
因為,且
,所以四邊形
是平行四邊形,又因為
是
的中點,點
為
的中點,所以四邊形
是平利四邊形,因此有
,
又因為平面
,而
平面
,因此有
平面
;
(2)以為空間直角坐標(biāo)系的坐標(biāo)原點,以
所在的直線為
軸建立空間直角坐標(biāo)系,如下圖所示:
設(shè)平面和平面
的一個法向量分別為:
,所以
;
,所以
,
,
所以二面角的平面角的正弦值為:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知四邊形
是邊長為
的正方形,點
是
的中點,點
在底面
上的射影為點
,點
在棱
上,且四棱錐
的體積為
.
(1)若點是
的中點,求證:平面
平面
;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.證明:
(1)存在唯一x0∈(0,1),使f(x0)=0;
(2)存在唯一x1∈(1,2),使g(x1)=0,且對(1)中的x0,有x0+x1<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家每年都會對中小學(xué)生進行體質(zhì)健康監(jiān)測,一分鐘跳繩是監(jiān)測的項目之一.今年某小學(xué)對本校六年級300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計,發(fā)現(xiàn)一分鐘跳繩個數(shù)最低為10,最高為189.現(xiàn)將跳繩個數(shù)分成,
,
,
,
,
6組,并繪制出如下的頻率分布直方圖.
(1)若一分鐘跳繩個數(shù)達到160為優(yōu)秀,求該校六年級學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);
(2)上級部門要對該校體質(zhì)監(jiān)測情況進行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
.試估計此校六年級男生一分鐘跳繩個數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l的參數(shù)方程為
(t為參數(shù),
).
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點,直線l的傾斜角,P點坐標(biāo)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點
,且離心率為
.
(1)求橢圓的方程;
(2)設(shè)橢圓在左、右頂點分別為
、
,左焦點為
,過
的直線
與
交于
、
兩點(
和
均不在坐標(biāo)軸上),直線
、
分別與
軸交于點
、
,直線
、
分別與
軸交于點
、
,求證:
為定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com