【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預(yù)測該員工第六年的年薪為多少?
附:線性回歸方程中系數(shù)計算公式分別為:
,
,其中
、
為樣本均值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點Q是圓上的動點,點
,若線段QN的垂直平分線MQ于點P.
(I)求動點P的軌跡E的方程
(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于B,C兩點,求證:直線AB、AC的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為
,過點
垂直于
軸的直線與拋物線
相交于
兩點,拋物線
在
兩點處的切線及直線
所圍成的三角形面積為
.
(1)求拋物線的方程;
(2)設(shè)是拋物線
上異于原點
的兩個動點,且滿足
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點為
,圓
:
,過
作垂直于
軸的直線交拋物線
于
、
兩點,且
的面積為
.
(1)求拋物線的方程和圓
的方程;
(2)若直線、
均過坐標(biāo)原點
,且互相垂直,
交拋物線
于
,交圓
于
,
交拋物線
于
,交圓
于
,求
與
的面積比的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,直角梯形
通過直角梯形
以直線
為軸旋轉(zhuǎn)得到,且使得平面
平面
.
為線段
的中點,
為線段
上的動點.
()求證:
.
()當(dāng)點
滿足
時,求證:直線
平面
.
()當(dāng)點
是線段
中點時,求直線
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,動點
滿足
,
的軌跡為曲線
.
(1)求曲線的方程;
(2)過定點作直線
交曲線
于
兩點.設(shè)
為坐標(biāo)原點,若直線
與
軸垂直,求
面積的最大值;
(3)設(shè),在
軸上,是否存在一點
,使直線
和
的斜率的乘積為非零常數(shù)?若存在,求出點
的坐標(biāo)和這個常數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒有公共點,求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某新上市的電子產(chǎn)品舉行為期一個星期(7天)的促銷活動,規(guī)定購買該電子產(chǎn)品可免費贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數(shù)進(jìn)行統(tǒng)計,y表示第x天參加該活動的人數(shù),得到統(tǒng)計表格如下,經(jīng)計算得.
x | 1 | 2 | 3 | 4 | 5 |
y | 4 | m | 10 | 23 | 22 |
(1)若y與x具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)預(yù)測該星期最后一天參加該活動的人數(shù)(按四舍五入取到整數(shù)).
參考公式:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com