【題目】如圖:直線平面
,直線
平行四邊形
,四棱錐
的頂點(diǎn)
在平面
上,
,
,
,
,
,
,
、
分別是
與
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求三棱錐的體積.
【答案】(1)見解析;(2).
【解析】
(1)先根據(jù)三角形中位線性質(zhì)得
,
,再根據(jù)線面平行判定定理以及面面平行判定定理得平面
平面
,最后根據(jù)面面平行性質(zhì)得結(jié)論,(2)先根據(jù)線面垂直得面面垂直:平面
平面
,,再根據(jù)面面垂直性質(zhì)定理得
平面
,最后根據(jù)等體積法以及錐體體積公式求結(jié)果.
(Ⅰ)連接,底面
為平行四邊形
∵是
的中點(diǎn),
是
的中點(diǎn),
∵是
的中點(diǎn),
是
的中點(diǎn),
而,
,
平面
平面
平面
,
平面
;
(Ⅱ)由平面
,
平行四邊形
平面
底面
,
,
,
底面
四邊形
為矩形, 即四邊形
為直角梯形,
平面
平面
,
過作
交
于
,
平面
,即
平面
由,
,
,知
,
,得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng)。設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(單位:億元)的數(shù)據(jù)如下:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
儲(chǔ)蓄存款 | 3.4 | 3.6 | 4.5 | 4.9 | 5.5 | 6.1 | 7.0 |
(1)求關(guān)于
的線性回歸方程;
(2)2018年城鄉(xiāng)居民儲(chǔ)蓄存款前五名中,有三男和兩女。現(xiàn)從這5人中隨機(jī)選出2人參加某訪談節(jié)目,求選中的2人性別不同的概率。
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
、
,圓
經(jīng)過橢圓
的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)
在橢圓
上,且
,
.
(Ⅰ)求橢圓的方程和點(diǎn)
的坐標(biāo);
(Ⅱ)過點(diǎn)的直線
與圓
相交于
、
兩點(diǎn),過點(diǎn)
與
垂直的直線
與橢圓
相交于另一點(diǎn)
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某城市擬在矩形區(qū)域內(nèi)修建兒童樂園,已知
百米,
百米,點(diǎn)E,N分別在AD,BC上,梯形
為水上樂園;將梯形EABN分成三個(gè)活動(dòng)區(qū)域,
在
上,且點(diǎn)B,E關(guān)于MN對(duì)稱.現(xiàn)需要修建兩道柵欄ME,MN將三個(gè)活動(dòng)區(qū)域隔開.設(shè)
,兩道柵欄的總長(zhǎng)度
.
(1)求的函數(shù)表達(dá)式,并求出函數(shù)的定義域;
(2)求的最小值及此時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在
上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)在
上的最小值為
,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的兩個(gè)焦點(diǎn)分別為
和
,短軸的兩個(gè)端點(diǎn)分別為
和
,點(diǎn)
在橢圓
上,且滿足
,當(dāng)
變化時(shí),給出下列三個(gè)命題:
①點(diǎn)的軌跡關(guān)于
軸對(duì)稱;②
的最小值為2;
③存在使得橢圓
上滿足條件的點(diǎn)
僅有兩個(gè),
其中,所有正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f[f(1)]的值;
(2)若f(x)>1,求x的取值范圍;
(3)判斷函數(shù)在(-2,+∞)上的單調(diào)性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知
:
,橢圓
:
,
為橢圓右頂點(diǎn).過原點(diǎn)
且異于坐標(biāo)軸的直線與橢圓
交于
,
兩點(diǎn),直線
與
的另一交點(diǎn)為
,直線
與
的另一交點(diǎn)為
,其中
.設(shè)直線
,
的斜率分別為
,
.
(Ⅰ)求的值;
(Ⅱ)記直線,
的斜率分別為
,
,是否存在常數(shù)
,使得
?若存在,求
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有17名學(xué)生參加某大學(xué)組織的夏令營(yíng)活動(dòng),每人至少參加地學(xué)、考古、信息科學(xué)三科夏令營(yíng)活動(dòng)中的一科,已知其中參加地學(xué)夏令營(yíng)活動(dòng)的有11人,參加考古夏令營(yíng)活動(dòng)的有7人,參加信息科學(xué)夏令營(yíng)活動(dòng)的有9人,同時(shí)參加地學(xué)和考古夏令營(yíng)活動(dòng)的有4人,同時(shí)參加地學(xué)和信息科學(xué)夏令營(yíng)活動(dòng)的有5人,同時(shí)參加考古和信息科學(xué)夏令營(yíng)活動(dòng)的有3人,則三科夏令營(yíng)活動(dòng)都參加的人數(shù)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com