日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,空間四邊形ABCD的兩條對棱AC,BD互相垂直,AC,BD的長分別為8和2,則平行四邊形兩條對棱的截面四邊形EFGH在平移過程中,面積的最大值是_______________

          【答案】

          【解析】

          假設(shè)EFGN是截面四邊形,EFGN為平行四邊形,設(shè)EN=x(0<x≤2),F(xiàn)E=y(0<y≤8),xy=S(S為所求面積),利用EN∥BD,可得整理可得8=4x+y,利用基本不等式即可解得面積的最大值.

          如圖,

          假設(shè)EFGN是截面四邊形,EFGN為平行四邊形;

          設(shè)EN=x(0<x≤2),F(xiàn)E=y(0<y≤8),xy=S(S為所求面積);

          EN∥BD,可得:,

          兩式相加,得:,

          化簡,得8=4x+y,

          可得:8=4x+y≥2,(當(dāng)且僅當(dāng)2x=y時(shí)等號(hào)成立),解得:xy≤4,

          解得:S=xy≤4.

          故答案為:4.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在棱長為a的正方體ABCD-A1B1C1D1,AC1BD1相交于點(diǎn)O,則有(  )

          A. =2a2 B. a2

          C. a2 D. =a2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,則異面直線AB1和BC1所成角的正弦值為(  )

          A. 1 B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
          (Ⅰ)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
          (Ⅱ)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD,PD⊥底面ABCD,且底面ABCD為正方形,PD=DC=2,E,F,G分別是AB,PB,CD的中點(diǎn).

          (1)求證:EF⊥DC;

          (2)求證:GF∥平面PAD;

          (3)求點(diǎn)G到平面PAB的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,若橢圓的離心率為,雙曲線的離心率為的最小值為_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓過點(diǎn),右頂點(diǎn)為點(diǎn)

          (1)若直線與橢圓相交于點(diǎn)兩點(diǎn)(不是左、右頂點(diǎn)),且,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

          (2)是橢圓的兩個(gè)動(dòng)點(diǎn),若直線的斜率與的斜率互為相反數(shù),試判斷直線EF的斜率是否為定值?如果是,求出定值;反之,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知圓, 為拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線與軸交于

          (1)若,求過點(diǎn)的圓的切線方程;

          (2)若,求△面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】記Sn為等比數(shù)列{an}的前n項(xiàng)和.已知S2=2,S3=﹣6.(12分)
          (1)求{an}的通項(xiàng)公式;
          (2)求Sn , 并判斷Sn+1 , Sn , Sn+2是否能成等差數(shù)列.

          查看答案和解析>>

          同步練習(xí)冊答案