日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓過點(diǎn),右頂點(diǎn)為點(diǎn)

          (1)若直線與橢圓相交于點(diǎn)兩點(diǎn)(不是左、右頂點(diǎn)),且,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

          (2)是橢圓的兩個(gè)動(dòng)點(diǎn),若直線的斜率與的斜率互為相反數(shù),試判斷直線EF的斜率是否為定值?如果是,求出定值;反之,請(qǐng)說明理由

          【答案】(1);(2)

          【解析】

          (1) 設(shè)(x1,y1),(x2,y2),聯(lián)立方程組根據(jù)根與系數(shù)的關(guān)系,利用,得到,即可得出;

          (2) 設(shè)點(diǎn)坐標(biāo)分別為,設(shè)直線EF的方程為,聯(lián)立方程得到,利用韋達(dá)定理表示,即可得到結(jié)果.

          (1)設(shè)點(diǎn)坐標(biāo)分別為,點(diǎn)坐標(biāo)為,因?yàn)?/span>,則

          ,又,代入整理得

          , (*)

          ,當(dāng)時(shí),方程兩根為,則有

          ,代入(*)得,

          所以,

          當(dāng)時(shí),直線方程為,恒過點(diǎn),不符合題意,舍去;

          當(dāng)時(shí),直線方程為,恒過點(diǎn),該點(diǎn)在橢圓內(nèi),則恒成立,

          所以,直線過定點(diǎn).

          (2)設(shè)點(diǎn)坐標(biāo)分別為直線、EF的斜率顯然存在,

          所以,設(shè)直線EF的方程為,同(1)

          ,(#)

          當(dāng)時(shí),方程兩根為,則有,①

          因?yàn)橹本的斜率與的斜率互為相反數(shù),則

          ,又,代入整理得

          , ②

          代入②,化簡(jiǎn)得

          所以,

          當(dāng)時(shí),直線方程為,恒過點(diǎn),不符合題意,舍去;

          當(dāng)時(shí),方程(#)即,則時(shí),,

          所以當(dāng)時(shí),恒成立,

          所以,直線EF的斜率為定值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC,AB=AC=4,BC=2,點(diǎn)D為AB延長(zhǎng)線上一點(diǎn),BD=2,連結(jié)CD,則△BDC的面積是 , com∠BDC=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
          (Ⅰ)若 ,求x的值;
          (Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,空間四邊形ABCD的兩條對(duì)棱AC,BD互相垂直,AC,BD的長(zhǎng)分別為8和2,則平行四邊形兩條對(duì)棱的截面四邊形EFGH在平移過程中,面積的最大值是_______________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓,直線.

          (1)證明:對(duì)任意實(shí)數(shù),直線恒過定點(diǎn)且與圓交于兩個(gè)不同點(diǎn);

          (2)求直線被圓截得的弦長(zhǎng)最小時(shí)的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
          (Ⅰ)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
          (Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線C2上,求△OAB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
          A.A∩B={x|x<0}
          B.A∪B=R
          C.A∪B={x|x>1}
          D.A∩B=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有下列命題:

          ①“的充要條件;

          ②“一元二次不等式的解集為R”的充要條件;

          ③“直線平行于直線的充分不必要條件;

          ④“的必要不充分條件.

          其中真命題的序號(hào)為____________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)有數(shù)列1,2,2,3,3,3,4,4,4,4,….

          (1)問10是該數(shù)列的第幾項(xiàng)到第幾項(xiàng)?

          (2)求第100項(xiàng).

          (3)求前100項(xiàng)的和.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案