【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,
分別為
的中點(diǎn).在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )
A.平面平面
B.直線
平面
C.直線平面
D.直線
平面
【答案】ABC
【解析】
將幾何體的平面圖還原立體圖,運(yùn)用線面平行的判定定理和面面平行的判定定理對四個(gè)選項(xiàng)進(jìn)行辨析.
作出立體圖形如圖所示.連接四點(diǎn)構(gòu)成平面
.
對于,因?yàn)?/span>
分別是
的中點(diǎn),所以
.
又平面
,
平面
,所以
平面
.
同理,平面
.又
,
平面
,
平面
,
所以平面平面
,故A正確;
對于,連接
,設(shè)
的中點(diǎn)為M,則M也是
的中點(diǎn),所以
,又
平面
,
平面
,所以
平面
,故B正確;
對于,由A中的分析知
,
,所以
,因?yàn)?/span>
平面
,
平面
,所以直線
平面
,故C正確;
對于,根據(jù)C中的分析可知
再結(jié)合圖形可得,
,則直線
與平面
不平行,故D錯(cuò)誤.
故選
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2,0),且圓C:x2+y2﹣6x+4y+4=0.
(Ⅰ)當(dāng)直線過點(diǎn)P且與圓心C的距離為1時(shí),求直線
的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線與圓C交于A、B兩點(diǎn),若|AB|=4,求以線段AB為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①回歸直線恒過樣本點(diǎn)的中心
,且至少過一個(gè)樣本點(diǎn);
②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于
;
③對分類變量與
,
的觀測值
越小,“
與
有關(guān)系”的把握程度越大;
④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.則正確命題的個(gè)數(shù)為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,下面是3月1日至5日每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細(xì)記錄:
(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均小于2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
參考公式:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,
,
是等比數(shù)列,
,
,
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求當(dāng)
是偶數(shù)時(shí),數(shù)列
的前
項(xiàng)和
;
(3)若,是否存在實(shí)數(shù)
使得不等式
對任意的
,
恒成立?若存在,求出所有滿足條件的實(shí)數(shù)
,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時(shí)的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為
,其他費(fèi)用為每小時(shí)
元,且該貨輪的最大航行速度為
海里/小時(shí).
()請將該貨輪從甲地到乙地的運(yùn)輸成本
表示為航行速度
(海里/小時(shí))的函數(shù).
()要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司結(jié)合公司的實(shí)際情況針對調(diào)休安排展開問卷調(diào)查,提出了,
,
三種放假方案,調(diào)查結(jié)果如下:
支持 | 支持 | 支持 | |
35歲以下 | 20 | 40 | 80 |
35歲以上(含35歲) | 10 | 10 | 40 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從“支持
方案”的人中抽取了6人,求
的值;
(2)在“支持方案”的人中,用分層抽樣的方法抽取5人看作一個(gè)總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,是過定點(diǎn)
且傾斜角為
的直線,在極坐標(biāo)系(以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸,取相同單位長度)中,曲線
的極坐標(biāo)方程為
.
(1)寫出直線的參數(shù)方程,并將曲線
的方程為化直角坐標(biāo)方程;
(2)若曲線與直線
相交于不同的兩點(diǎn)
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)
時(shí),
的極大值為7;當(dāng)
時(shí),
有極小值.求
(1)的值;
(2)求函數(shù)在
上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com