【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付(又稱手機(jī)支付)越來越普通,某學(xué)校興趣小組為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有個(gè)人.把這
個(gè)人按照年齡分成5組:第1組
,第2組
,第3組
,第4組
,第5組
,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.
(1)求 和
的值,并根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù);
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);
(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.
【答案】(1),
,30;(2)第1組2人,第2組3人,第3組1人;(3)
.
【解析】試題分析:(1)直接利用頻率分布直方圖,結(jié)合累積頻率為1,頻數(shù)=頻率×樣本容量,可分別求出 和
的值,最高點(diǎn)的中點(diǎn)橫坐標(biāo)即為眾數(shù);
(2)直接利用抽樣比即可求第1,2,3組每組各抽取人數(shù).
(3)列出(2)抽取的6人中隨機(jī)抽取2人是所有情況,求出這2人來自同一個(gè)組的數(shù)目,即可求解概率.
試題解析:
(1)由題意可知,,
由,
解得,
由頻率分布直方圖可估計(jì)這組數(shù)據(jù)的眾數(shù)為30;
(2)第1,3,4組頻率之比為0.020:0.030:0.010=2:3:1
則從第1組抽取的人數(shù)為,
從第3組抽取的人數(shù)為,
從第4組抽取的人數(shù)為;
(3)設(shè)第1組抽取的2人為,第3組抽取的3人為
,第4組抽取的1人為
,則從這6人中隨機(jī)抽取2人有如下種情形:
,
,共有15個(gè)基本事件.
其中符合“抽取的2人來自同一個(gè)組”的基本事件有共4個(gè)基本事件,
所以抽取的2人來自同一個(gè)組的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)為
,過點(diǎn)
的直線
與
相交于
、
兩點(diǎn),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
.
(Ⅰ)判斷點(diǎn)是否在直線
上,并給出證明;
(Ⅱ)設(shè),求
的內(nèi)切圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長為的直四棱柱
中,底面
為棱形,
為棱
上一點(diǎn),且
(1)求證:平面平面
;
(2)平面將四棱柱
分成上、下兩部分,求這兩部分的體積之比.
(棱臺的體積公式為,其中
分別為上、下底面面積,
為棱臺的高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間
上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)
,求數(shù)列
的前
項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)有如下結(jié)論:
①該函數(shù)為偶函數(shù);
②若,則
;
③其單調(diào)遞增區(qū)間是;
④值域是;
⑤該函數(shù)的圖象與直線有且只有一個(gè)公共點(diǎn).(本題中
是自然對數(shù)的底數(shù))
其中正確的是__________.(請把正確結(jié)論的序號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)滿足:
①對任意的,
,當(dāng)
時(shí),有
成立;
②對恒成立.求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,四邊形
是直角梯形,
底面
,
為
的中點(diǎn),
點(diǎn)在
上,且
.
(1)證明: 平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(1) 求圖中的值;
(2) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com