【題目】某學(xué)生對一些對數(shù)進行運算,如圖表格所示:
x | 0.21 | 0.27 | 1.5 | 2.8 |
lgx | 2a+b+c﹣3(1) | 6a﹣3b﹣2(2) | 3a﹣b+c(3) | 1﹣2a+2b﹣c(4) |
x | 3 | 5 | 6 | 7 |
lgx | 2a﹣b(5) | a+c(6) | 1+a﹣b﹣c(7) | 2(a+c)(8) |
x | 8 | 9 | 14 | |
lgx | 3﹣3a﹣3c(9) | 4a﹣2b(10) | 1﹣a+2b(11) |
現(xiàn)在發(fā)覺學(xué)生計算中恰好有兩次地方出錯,那么出錯的數(shù)據(jù)是( )
A.(3),(8)
B.(4),(11)
C.(1),(3)
D.(1),(4)
【答案】A
【解析】解:由題意可知:lg0.21=lg3+lg7﹣1=2a+b+c﹣3;
lg0.27=3lg3﹣2=6a﹣3b﹣2;
lg1.5=lg3+lg5﹣1=3a﹣b+c
lg2.8=2lg2+lg7﹣1,
lg3=2a﹣b,
lg5=a+c
lg6=lg2+lg3=1+a﹣b﹣c,
lg7=2a+2c,
lg8=3﹣3a﹣3c,
lg9=2lg3=4a﹣2b,
lg14=lg2+lg7=1﹣a+2b.
有上述各式,可以看出,lg3,lg9,lg0.27是正確的關(guān)系式,則lg7=2a+2c,lg0.21=lg3+lg7﹣1=2a+b+c﹣3,可知lg7錯誤;
由lg5=a+c,lg1.5=lg3+lg5﹣1=3a﹣b+c,可知lg5錯誤;
即(3),(8)錯誤.
故選:A.
【考點精析】關(guān)于本題考查的對數(shù)的運算性質(zhì),需要了解①加法:②減法:
③數(shù)乘:
④
⑤
才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng) 時,不等式
恒成立,則實數(shù)a的取值范圍是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且S△ABC=
,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線和定點
,
是此曲線的左、右焦點,以原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系.
(1)求直線的極坐標(biāo)方程;
(2)經(jīng)過點且與直線
垂直的直線交此圓錐曲線于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(2x+θ)+ cos(2x+θ),(|θ|<
)的圖象關(guān)于點
對稱,則f(x)的增區(qū)間( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的非負可導(dǎo)函數(shù),且滿足xf′(x)+f(x)≤0,對任意正數(shù)a、b,若a<b,則必有( )
A.af(b)≤bf(a)
B.bf(a)≤af(b)
C.af(a)≤f(b)
D.bf(b)≤f(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,兩同心圓: 和
.
為大圓上一動點,連結(jié)
(
為坐標(biāo)原點)交小圓于點
,過點
作
軸垂線
(垂足為
),再過點
作直線
的垂線
,垂足為
.
(1)當(dāng)點在大圓上運動時,求垂足
的軌跡方程;
(2)過點的直線
交垂足
的軌跡于
兩點,若以
為直徑的圓與
軸相切,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是( )
A.90cm2
B.129cm2
C.132cm2
D.138cm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com