日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知A(-3,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動,并且滿足
          AB
          BQ
          =0
          ,
          BC
          =
          1
          2
          CQ

          (1)求動點(diǎn)Q的軌跡方程;
          (2)設(shè)過點(diǎn)A的直線與Q的軌跡交于E、F兩點(diǎn),A′(3,0),求直線A′E、A′F的斜率之和.
          (1)設(shè)點(diǎn)B、C、Q的坐標(biāo)分別為(0,b)、(c,0)、(x,y),
          AB
          =(3,b)
          ,
          BC
          =(c,-b)
          CQ
          =(x-c,y)
          BQ
          =(x,y-b)

          AB
          BQ
          =0
          ,
          BC
          =
          1
          2
          CQ

          3x+b(y-b)=0
          -b=
          1
          2
          y
          ,消去b得:y2=4x;
          (2)設(shè)過過點(diǎn)A的直線方程為:y=k(x+3),
          聯(lián)立
          y=k(x+3)
          y2=4x
          ,消去y得:k2x2+(6k2-4)x+9k2=0.
          設(shè)E(x1,y1),F(xiàn)(x2,y2),
          x1+x2=
          4-6k2
          k2
          ,x1x2=9

          kAE+kAF=
          y1
          x1-3
          +
          y2
          x2-3

          =
          y1(x2-3)+y2(x1-3)
          (x1-3)(x2-3)
          =
          k(x1+3)(x2-3)+k(x2+3)(x1-3)
          x1x2-3(x1+x2)+9

          =
          2k(x1x2-9)
          x1x2-3(x1+x2)-9
          =
          2k(9-9)
          x1x2-3(x1+x2)-9
          =0
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),O是坐標(biāo)原點(diǎn),C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,且△AOB的面積為
          5

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)P(4,0)作與x軸不重合的直線l與C交于相異兩點(diǎn)M、N,交y軸于Q點(diǎn),證明
          |PQ|
          |PM|
          +
          |PQ|
          |PN|
          為定值,并求這個(gè)定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,直線l:y=x+b與拋物線x2=4y相切于點(diǎn)A.
          (1)求實(shí)數(shù)b的值;
          (2)若過拋物線的焦點(diǎn)且平行于直線l的直線l1交拋物線于B,C兩點(diǎn),求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的頂點(diǎn)為A1,A2,B1,B2,焦點(diǎn)為F1,F(xiàn)2,|A1B2|=
          7
          S?A1B1A2B2=2S?B1F1B2F2
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)直線m過Q(1,1),且與橢圓相交于M,N兩點(diǎn),當(dāng)Q是MN的中點(diǎn)時(shí),求直線m的方程.
          (Ⅲ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交于P點(diǎn)且與橢圓相交于兩點(diǎn)A,B的直線,|
          OP
          |=1
          ,是否存在上述直線l使以AB為直徑的圓過原點(diǎn)?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率為
          2
          2
          ,直線l:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長為直徑的圓相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn).設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得△PGH是以GH為底邊的等腰三角形.如果存在,求出實(shí)數(shù)m的取值范圍,如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          6
          3
          ,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
          3
          2

          (1)求橢圓的方程.
          (2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知F1,F(xiàn)2為橢圓x2+
          y2
          2
          =1
          上的兩個(gè)焦點(diǎn),A,B是過焦點(diǎn)F1的一條動弦,則△ABF2的面積的最大值為( 。
          A.
          2
          2
          B.
          2
          C.1D.2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          曲線y=x2上的點(diǎn)到直線2x+y+4=0的最短距離是(  )
          A.
          5
          5
          B.
          2
          5
          5
          C.
          3
          5
          5
          D.
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線C1:y2=2px(p>0)的焦點(diǎn)F以及橢圓C2
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓O:x2+y2=1上.
          (1)求拋物線C1和橢圓C2的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)F的直線交拋物線C1于A,B兩不同點(diǎn),交y軸于點(diǎn)N,已知
          NA
          =λ1
          AF
          NB
          =λ2
          BF
          ,則λ12是否為定值?若是,求出其值;若不是,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案