日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知對一切實數(shù)x,
          3x2+2x+2x2+x+1
          恒大于正整數(shù)k,則這樣的k為
           
          分析:將分式函數(shù)恒成立問題先轉(zhuǎn)化為二次函數(shù)的恒成立問題,利用二次函數(shù)的函數(shù)值恒小于0處理.
          解答:解:依題意對?x∈R
          3x2+2x+2
          x2+x+1
          > k
          恒成立
          ∴3x2+2x+2>k(x2+x+1)
          ∴(k-3)x2+(k-2)x+k-2<0
          設(shè)函數(shù)y=(k-3)x2+(k-2)x+k-2,即y恒小于0
          k-3<0
          △=(k-2)2-
          4(k-3)(k-2)<0

          解得 k<2  又k為正整數(shù),
          ∴k=1
          故答案為1.
          點評:本題的關(guān)鍵在于“轉(zhuǎn)化”,先將分式函數(shù)恒成立轉(zhuǎn)化為二次函數(shù)恒成立問題,再利用二次函數(shù)性質(zhì)加以解決,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知關(guān)于x的一元二次不等式ax2-4x+3>0
          (1)當(dāng)a=1時,求不等式ax2-4x+3>0的解集; 
          (2)當(dāng)a取什么值時,關(guān)于x的一元二次不等式ax2-4x+3>0對一切實數(shù)x都成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)對一切實數(shù)x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,
          (1)求f(0)的值;
          (2)求f(x)的解析式;
          (3)函數(shù)g(x)=xf(x+x)在[0,2]上何處取得極值,最值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
          11
          01
          ;
          (I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
          (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
          (2)選修4-4:極坐標(biāo)系與參數(shù)方程
          從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
          (Ⅰ)求動點P的極坐標(biāo)方程;
          (Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
          (3)選修4-5:不等式選講
          已知f(x)=|6x+a|.
          (Ⅰ)若不等式f(x)≥4的解集為{x|x≥
          1
          2
          或x≤-
          5
          6
          }
          ,求實數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=3x+3-x,g(x)=
          x
          2
          +log3(1+3-x).
          (1)用定義證明:函數(shù)g(x)在區(qū)間(-∞,0]上為減函數(shù),在區(qū)間[0,+∞)上為增函數(shù);
          (2)判斷函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
          (3)若g(x)≤
          1
          2
          log3f(x)+a對一切實數(shù)x恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:新課程高中數(shù)學(xué)疑難全解 題型:044

          已知對一切實數(shù)x,不等式|(log3m)2-log3(27m2)|x2-(log3m-3)x-1<0恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案