日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點為橢圓的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形,直線與橢圓有且僅有一個交點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線軸交于,過點的直線與橢圓交于兩不同點 ,若,求實數(shù)的取值范圍.

          【答案】(1;(2.

          【解析】(Ⅰ)求橢圓標準方程,只要求出參數(shù),由于有,因此要列出關(guān)于的兩個方程,而由條件兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形得,再利用已知直線與橢圓只有一個公共點,即判別式為0可求得橢圓方程;

          (Ⅱ)由(Ⅰ)得點的坐標,從而可得,要求范圍只要求得的范圍,為此可直線分類,對斜率不存在時,求得,而當直線斜率存在時,可設(shè)出直線方程為,同時設(shè),則,由韋達定理可把表示為的函數(shù),注意直線與橢圓相交,判別式>0,確定的范圍,從而可得的范圍,最后可得的取值范圍.

          試題解析:(Ⅰ)由題意,得,則橢圓為:

          ,得 ,

          直線與橢圓有且僅有一個交點,

          ,

          橢圓的方程為 ;

          (Ⅱ)由(Ⅰ)得, 直線軸交于 ,

          ,

          當直線軸垂直時, ,

          ,

          當直線軸不垂直時,設(shè)直線的方程為,

          ,

          依題意得, ,且

          ,

          ,

          綜上所述, 的取值范圍是 .

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知定義域為的函數(shù)是奇函數(shù).

          1)求的值;

          (2)證明: 上的增函數(shù);

          3)若對任意的不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】過橢圓 上一點軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點

          (1)求點的軌跡的方程;

          (2)若點是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】海州市六一兒童節(jié)期間在婦女兒童活動中心舉行小學生“海州杯”圍棋比賽,規(guī)則如下:甲、乙兩名選手比賽時,每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或賽滿6局時比賽結(jié)束.設(shè)某校選手甲與另一選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負互不影響,已知第二局比賽結(jié)束時比賽停止的概率為.

          (1)求的值;

          (2)設(shè)表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

          (2)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),設(shè)為曲線在點處的切線,其中.

          (Ⅰ)求直線的方程(用表示);

          (Ⅱ)求直線軸上的截距的取值范圍;

          (Ⅲ)設(shè)直線分別與曲線和射線)交于, 兩點,求的最小值及此時的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-5:不等式選講

          設(shè)函數(shù).

          (1)求解不等式的解集;

          (2)若函數(shù)的定義域為R,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】高二年級的一個研究性學習小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學習小組又分成兩個小組進行驗證性實驗.

          1)第1組做了5次這種植物種子的發(fā)芽實驗(每次均種下一粒種子),求他們的實驗至少有3次成功的概率;

          2)第二小組做了若干次發(fā)芽試驗(每次均種下一粒種子),如果在一次實驗中種子發(fā)芽成功就停止實驗,否則將繼續(xù)進行下次實驗,直到種子發(fā)芽成功為止,但發(fā)芽實驗的次數(shù)最多不超過5次,求第二小組所做種子發(fā)芽實驗的次數(shù)的概率分布列和期望.

          查看答案和解析>>

          同步練習冊答案