日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)若函數(shù)為偶函數(shù),求實數(shù)的值;

          2)若,求函數(shù)的單調(diào)遞減區(qū)間;

          3)當時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

          【答案】1;(2;(3.

          【解析】

          1)根據(jù)偶函數(shù)的定義,結(jié)合題意,得到,進而可求出結(jié)果;

          2)先由題意得到,根據(jù)二次函數(shù)的性質(zhì),即可得出單調(diào)減區(qū)間;

          3)先由題意得到上恒成立,令,根據(jù)二次函數(shù)單調(diào)性,得出函數(shù)的最小值,只需即可求出結(jié)果.

          1)因為函數(shù)為偶函數(shù),

          所以,即,即,因此;

          2)因為,所以,

          因為函數(shù)的對稱軸為,開口向上;

          所以當時,函數(shù)單調(diào)遞減;當時,函數(shù)單調(diào)遞增;

          又函數(shù)的對稱軸為,開口向上;

          所以當時,函數(shù)單調(diào)遞增;當時,函數(shù)單調(diào)遞減;

          因此,函數(shù)的單調(diào)遞減區(qū)間為:

          3)由題意,不等式可化為,

          上恒成立,

          ,則只需即可;

          因為,所以,

          因此

          時,函數(shù)開口向上,對稱軸為:,

          所以函數(shù)上單調(diào)遞減;

          時,函數(shù)開口向上,對稱軸為;

          所以函數(shù)上單調(diào)遞增;

          因此,

          ,解得,

          因為,所以.

          即實數(shù)的取值范圍為.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,已知平行于軸的動直線交拋物線于點,點的焦點.圓心不在軸上的圓與直線,,軸都相切,設的軌跡為曲線

          ⑴求曲線的方程;

          ⑵若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當線段的長度最小時,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)為定義在上的偶函數(shù),且當時,.

          1)求當時,的解析式;

          2)在網(wǎng)格中繪制的圖像;

          3)若方程有四個根,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓過點,且離心率

          (1)求橢圓的標準方程

          (2)是否存在過點的直線交橢圓與不同的兩點,且滿足 (其中為坐標原點)。若存在,求出直線的方程;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合A{x|x22x30},B{x|x22mxm240,xRmR}

          (1)AB[0,3],求實數(shù)m的值;

          (2)ARB,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的右焦點為,過的直線交于,兩點,點的坐標為.當軸時,的面積為.

          (1)求橢圓的標準方程;

          (2)設直線的斜率分別為,證明:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設數(shù)列的通項公式是表示不超過實數(shù)的最大整數(shù)).

          (1)證明:、、都是數(shù)列的項;

          (2)是否是數(shù)列的項,證明你的結(jié)論;

          (3)證明:有無窮多個2的正整數(shù)冪是數(shù)列的項.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率,且經(jīng)過點,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.

          (1)求該橢圓的標準方程;

          (2)上一點(軸上方),直線分別交橢圓于,兩點,若,求點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓長軸是短軸的倍,且右焦點為.

          (Ⅰ)求橢圓C的標準方程;

          (Ⅱ)直線交橢圓兩點,若線段中點的橫坐標為,求直線的方程及的面積.

          查看答案和解析>>

          同步練習冊答案