【題目】已知函數(shù) .
(1)若曲線 在
處的切線經(jīng)過坐標原點,求
及該切線的方程;
(2)設(shè) ,若函數(shù)
的值域為
,求實數(shù)
的取值范圍.
【答案】
(1)解:由已知得 (
),
則 ,所以
,
所以所求切線方程為
(2)解:令 ,得
;令
,得
.
所以 在
上單調(diào)遞減,在
上單調(diào)遞增,
所以 ,所以
.
而 在
上單調(diào)遞增,所以
.
欲使函數(shù) 的值域為
,須
.
①當(dāng) 時,只須
,即
,所以
.
②當(dāng) 時,
,
,
只須 對一切
恒成立,即
對一切
恒成立,
令
,得
,
所以 在
上為增函數(shù),
所以 ,所以
對一切
恒成立.
綜上所述:
【解析】(1)根據(jù)題目中所給的條件的特點,先求出原函數(shù)的導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程,
(2)根據(jù)導(dǎo)數(shù)的應(yīng)用先求出函數(shù)f(x)的值域、g(x)的值域,再根據(jù)分段函數(shù)F(x)的值域為一切實數(shù),分類討論可求出a的范圍.
導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系:
(1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù),f′(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;
(2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù),f′(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間.
【考點精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減;求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點處的函數(shù)值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的右頂點為
,左、右焦點分別為
,過點
且斜率為
的直線與
軸交于點
,與橢圓交于另一個點
,且點
在
軸上的射影恰好為點
.
(1)求橢圓 的標準方程;
(2)過點 的直線與橢圓交于
兩點(
不與
重合),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中, 是兩條不同的直線,
是兩個不同的平面,則下列命題中的真命題是( )
A.若 ,
,則
B.若 ,
,
,則
C.若 ,
,則
D.若 ,
則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng) 時,求不等式
的解集;
(Ⅱ)若 的解集包含
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 上的函數(shù)
滿足
,且
是偶函數(shù),當(dāng)
時,
.令
,若在區(qū)間
內(nèi),函數(shù)
有4個不相等實根,則實數(shù)
的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系 中,以
為極點,
軸非負半軸為極軸建立坐標系,已知曲線
的極坐標方程為
,直線
的參數(shù)方程為:
(
為參數(shù)),兩曲線相交于
兩點.
(1)寫出曲線 的直角坐標方程和直線
的普通方程;
(2)若 求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
與
軸的交點為
,且圖象上兩對稱軸之間的最小距離為
,則使
成立的
的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com